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Federated Class Continual Learning
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◼ Federated Learning enables decentralized learning while protecting 

data privacy, making it essential in fields like healthcare and finance.

◼ Real-world Federated Learning  faces challenges like new data classes 

from clients and varying participants.

drives the development

Federated Class Continual Learning (FCCL)

A novel concept requiring models to learn new classes in federated training 

without forgetting prior knowledge.



Federated Class Continual Learning
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Problem definition:

◼ Multiple clients collaboratively learn a sequence of tasks with data 

distributed locally, and no class overlap between tasks.
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Challenges
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◼ Catastrophic Forgetting: forgetting old knowledge when learning new tasks.

◼ Stricter privacy protection in federated settings makes some continual 

learning methods, like experience replay, unsuitable. 

Challengs

◼ Existing FCCL methods use GANs or Data-free knowledge distillation for data 

replay.

◼ Low generation quality (GANs, Data-free knowledge distillation )

◼ Unstable training, especially in federated settings (GANs)

Limitation of existing methods
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Overview
To address these issues, we propose DDDR with two phases:

◼ Federated Class Inversion: Obtain class embeddings for subsequent generative replay.

◼ Replay-Augmented Training: Train the classifier with real and generated data.



Federated Class Inversion Phase

◼ Inspired by personalized generation models, we propose Federated Class Inversion, 

searching the conditional space of a pretrained conditional diffusion model to find 

conditions that guide the model to generate specific classes as class embeddings.

◼ We use FedAvg to aggregate class embeddings from different clients.

A naive idea: 
Train a diffusion model for each task 

for subsequent generative replay.
costly

but



Replay-Augmented Training Phase

ℒ𝐶𝐸 = 𝔼𝑥∼𝒳𝑐∪ ෡𝒳𝑐,𝑦∼𝒴𝑐∪ ෠𝒴𝑐
𝐶𝐸 ℱ 𝑥 , 𝑦

ℒ𝑃𝐶𝐸 = 𝔼𝑥∼ ෡𝒳𝑝,𝑦∼ ෠𝒴𝑝
𝐶𝐸 ℱ 𝑥 , 𝑦

ℒ𝐾𝐷 = 𝔼𝑥∼ ෡𝒳𝑝
𝐾𝐿(ℱ 𝑥 , ℱ′ 𝑥  

𝒳𝑐 , 𝒴𝑐
Real data 

for the current task.

෡𝒳𝑐 , ෠𝒴𝑐

Generated data 
for the current task.

෡𝒳𝑝, ෠𝒴𝑝

Generated data 
for the previous task.

Three common loss functions.

A domain gap exists between generated 
and real data, and only generated data is 

available for past tasks.

Contrastive learning 
Enhance Generalizability in real 

and generated domains.

ℒ𝑆𝐶𝐿 = 𝔼𝑒𝑖∼ℱ𝑒 𝒳𝑐∪ ෡𝒳𝑐 ,𝑒𝑝∼𝑃 𝑒𝑖
𝑙𝑜𝑔

exp 𝑠𝑖𝑚 Τ𝑒𝑖 , 𝑒𝑝 𝜏

σ𝑖≠𝑗 exp 𝑠𝑖𝑚 Τ𝑒𝑖 , 𝑒𝑗 𝜏
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Main Result

Cifar-100

Tiny-ImageNet

◼ DDDR significantly outperforms existing FCCL methods across all settings (task 

numbers and non-IID) for both datasets.



Ablation Study
◼ All modules contributed significant improvements to DDDR.

◼ ℒ𝑆𝐶𝐿 only brings improvement when used with ෡𝒳𝑐, ෠𝒴𝑐 (generated data for the 

current task), otherwise, it can have a negative effect.



Visualization of Generated Results

◼ Federated Class Inversion generates images that are close to the distribution of 

real images.
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Conclusion
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◼ We propose DDDR, an innovative FCCL framework. This marks the first 

application of employing the diffusion model to reproduce data in FCCL, 

effectively mitigating catastrophic forgetting.

◼ We propose Federated Class Inversion, achieving high-quality data generation 

in federated settings without consuming excessive additional resources.

◼ By incorporating contrastive learning, we enhance the generalization ability of 

classifiers across generated and real domains, further strengthening the 

representational capacity of generated data towards real data. 

◼ Comprehensive experiments across various datasets demonstrate that our 

approach significantly outperforms existing methods, establishing a new state-

of-the-art (SOTA) benchmark for FCCL.

Contributions
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The End

Code is available at: https://github.com/jinglin-liang/DDDR

https://github.com/jinglin-liang/DDDR
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