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Background



Federated Class Continual Learning

B Federated Learning enables decentralized learning while protecting
data privacy, making it essential in fields like healthcare and finance.

B Real-world Federated Learning faces challenges like new data classes
from clients and varying participants.

‘ drives the development

|{ Federated Class Continual Learning (FCCL)
I
I

A novel concept requiring models to learn new classes in federated training
without forgetting prior knowledge.



Federated Class Continual Learning

Problem definition:

B Multiple clients collaboratively learn a sequence of tasks with data
distributed locally, and no class overlap between tasks.
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Challenges

Challengs

B Catastrophic Forgetting: forgetting old knowledge when learning new tasks.
B Stricter privacy protection in federated settings makes some continual
learning methods, like experience replay, unsuitable.

Limitation of existing methods

B Existing FCCL methods use GANs or Data-free knowledge distillation for data
replay.
B Low generation quality (GANs, Data-free knowledge distillation )
B Unstable training, especially in federated settings (GANS)
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Overview

To address these issues, we propose DDDR with two phases:
B Federated Class Inversion: Obtain class embeddings for subsequent generative replay.
B Replay-Augmented Training: Train the classifier with real and generated data.
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Federated Class Inversion Phase

A naive idea: Train a diffusion model for each task but > costly
for subsequent generative replay.

B Inspired by personalized generation models, we propose Federated Class Inversion,
searching the conditional space of a pretrained conditional diffusion model to find
conditions that guide the model to generate specific classes as class embeddings.

B We use FedAvg to aggregate class embeddings from different clients.
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Replay-Augmented Training Phase
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Real data Generated data Generated data
for the current task. for the current task. for the previous task.
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Lpce = ]Ex~)?p,y~fgp[CE(T(x)' ] » Three common loss functions.
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A domain gap exists between generated Contrastive learning

and real data, and only generated data is - Enhance Generalizability in real
available for past tasks. ) and generated domains.
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Main Result

B DDDR significantly outperforms existing FCCL methods across all settings (task

numbers and non-11D) for both datasets.

Cifar-100
CIFAR-100 CIFAR-100
Data partition | 11D | non-11D - Fnetune 50 4 fmar
Tasks | T=5 | r=1 | T=5 | T-10 i
Method | Ace(t) FM(L) | Ace(t) FM(L) | Ace(t) FM(L)| Ace(t) FM(L) 60
5
Finetune 1741 082 | 876 087 | 1615 0.79 | 808 085 Yao
Fed EWC 21.02 0.69 10.61 0.75 21.16 0.69 11.79 0.75 <
Target 508 047 | 2369 048 | 3380 047 | 2067 0.54
MFCL 1039 040 | 3247 045 | 4134 032 | 27.97 043 20
Ours 51.15 0.29 | 43.76 0.29 | 47.93 0.25 | 40.33 0.25
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Data partition | 11D | non-11D
Tasks | T4 | r=10 | T=5 | 110
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Finetune 1212 061 | 677 0.68 | 1L73 057 | 6.51
Fed EWC 1300 050 | 842 12.25 048 | 7.95
Target 18.03 015 11.59 18.11 0.11 11.49
MFCL 14.79 10.31 14.23 050 | 7.72
Ours 2577 0.35 | 19.23  0.35 | 23.30 0.34 | 16.05 0 3 5
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Ablation Study

B All modules contributed significant improvements to DDDR.
B Ly, only brings improvement when used with (X, J.) (generated data for the
current task), otherwise, it can have a negative effect.

| (%, Yp) (X, D) Lscw | Acc(t)  FM())

1 v v v 47.93 0.256
2 X v v 17.13 0.84
3 v X v 43.96 0.34
4 v v X 44.96 0.27
b5} X X v 15.99 0.82
6 v X X 44.77 0.28
7 X v X 17.12 0.82
8 X X X 16.15 0.79




Visualization of Generated Results

B Federated Class Inversion generates images that are close to the distribution of
real images.
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Conclusion

Contributions

B \We propose DDDR, an innovative FCCL framework. This marks the first
application of employing the diffusion model to reproduce data in FCCL,
effectively mitigating catastrophic forgetting.

B \We propose Federated Class Inversion, achieving high-quality data generation
in federated settings without consuming excessive additional resources.

B By incorporating contrastive learning, we enhance the generalization ability of
classifiers across generated and real domains, further strengthening the
representational capacity of generated data towards real data.

B Comprehensive experiments across various datasets demonstrate that our
approach significantly outperforms existing methods, establishing a new state-
of-the-art (SOTA) benchmark for FCCL.
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Code is available at: https://github.com/jinglin-liang/DDDR



https://github.com/jinglin-liang/DDDR
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