BRAVE: Broadening the visual encoding of vision-language models

Oğuzhan Fatih Kar Alessio Tonioni Petra Poklukar

Achin Kulshrestha Amir Zamir Federico Tombari

ECCV 2024 (Oral) brave-vlms.epfl.ch

- Limited language capabilities
 - Hallucinations^{1,2}
 - Logical faults^{3,4}

¹Bang et al. 2023 ²Guo et al. 2023 ³Shen et al. 2023 ⁴Thorp et al. 2023

- Limited language capabilities
 - Hallucinations^{1,2}
 - Logical faults^{3,4}
- Limited visual understanding
 - "Blindness"⁵
 - Visual hallucinations⁶

¹Bang et al. 2023 ²Guo et al. 2023 ³Shen et al. 2023 ⁴Thorp et al. 2023 ⁵Tong et al. 2024 ⁶Li et al. 2023

- Limited language capabilities
 - Hallucinations^{1,2}
 - Logical faults^{3,4}
- Limited visual understanding
 - "Blindness"⁵
 - Visual hallucinations⁶

¹Bang et al. 2023 ²Guo et al. 2023 ³Shen et al. 2023 ⁴Thorp et al. 2023 ⁵Tong et al. 2024 ⁶Li et al. 2023 Our focus

Is there a hand using the Are the butterfly's feet mouse in this image? visible?

Is there a hand using the Are the butterfly's feet Is the door of the truck mouse in this image? visible?

InstructBLIP:

LLaVA-1.5

¹Tong et al. 2024

Is there a hand using the Are the butterfly's feet Is the door of the truck mouse in this image? visible?

Yes

No

InstructBLIP:

LLaVA-1.5

¹Tong et al. 2024

Is there a hand using the Are the butterfly's feet Is the door of the truck mouse in this image? visible?

Yes

InstructBLIP: No 🔽 Yes

LLaVA-1.5 No No 🗙

¹Tong et al. 2024

Is there a hand using the Are the butterfly's feet mouse in this image? visible?

Yes

InstructBLIP: Yes No 🔽

LLaVA-1.5 : No No 🗙

¹Tong et al. 2024

Yes

Yes Yes 🗙

Yes

No

Is there a hand using the Are the butterfly's feet mouse in this image? visible?

Yes

InstructBLIP: Yes No 🔽

LLaVA-1.5 No 🗙 No

¹Tong et al. 2024

Yes	No	Yes	Nc
Yes	Yes 🔀	Yes	Ye
Yes	No 🔽	Yes	Ye

Is there a hand using the Are the butterfly's feet visible? mouse in this image?

No

¹Tong et al. 2024

Yes	No	Yes	Nc
Yes	Yes 🔀	Yes	Ye
Yes	No 🔽	Yes	Ye

Is there a hand using the Are the butterfly's feet mouse in this image? visible?

Yes

No

InstructBLIP : No 🔽 Yes (Ovr. Acc. 16.7%) **LLaVA-1.5** : No 🗙 No (Ovr. Acc. 24.7%)

¹Tong et al. 2024

Yes	No	Yes	Nc
Yes	Yes 🔀	Yes	Ye
Yes	No 🔽	Yes	Ye

Is there a hand using the Are the butterfly's feet mouse in this image? visible?

Yes

No

¹Tong et al. 2024

No

Is the door of the truck open?

Yes

'es	No	Yes	Nc
és	Yes 🔀	Yes	Ye
'es	No 🔽	Yes	Ye

Yes

BRAVE: Broadening the visual encoding of VLMs

- Core idea from machine learning¹
 - Different representations -> Different generalization properties
 - Ensemble to create a more complete representation

ent generalization properties ete representation

BRAVE: Broadening the visual encoding of VLMs

- Core idea from machine learning¹
 - Different representations -> Different generalization properties
 - Ensemble to create a more complete representation
 - Find the strongest set via benchmarking

ent generalization properties ete representation narking

Benchmarking vision encoders

- 8 different encoders
 - Different objectives
 - Masked modeling, contrastive learning, etc.
 - Different training datasets
 - LAION-2B, JFT-3B, etc.
 - Different model sizes
 - 300M to 4B

Benchmarking vision encoders

- 8 different encoders
 - Different objectives
 - Masked modeling, contrastive learning, etc.
 - Different training datasets
 - LAION-2B, JFT-3B, etc.
 - Different model sizes
 - 300M to 4B
 - CLIP¹, EVA², DINOv2³, SIGLIP⁴, OpenCLIP⁵, SILC⁶, ViT-e⁷, ViT-G⁸
 - Evaluation tasks: Captioning, VQA

¹Radford et al. 2021 ²Fang et al. 2023 ³Oquab et al. 2023 ⁴*Zhai et al. 2023* ⁵Cherti et al. 2023 ⁶Naeem et al. 2023 ⁷Chen et al. 2022 ⁸Zhai et al. 2022

No encoder perform consistently well

- No encoder perform consistently well
 - Using a single encoder is inherently limited

- No encoder perform consistently well
 - Using a single encoder is inherently limited
- Encoders with different biases can perform similarly

- No encoder perform consistently well
 - Using a single encoder is inherently limited
- Encoders with different biases can perform similarly
 - Different cues to exploit

Can we broaden the visual capabilities of VLMs

through combining vision encoders with different biases?

Output: *Two giraffes* walking next to each other.

Output: *Two giraffes* walking next to each other.

State-of-the-art performance for captioning & VQA tasks

 State-of-the-art performance for captioning & VQA tasks COCO¹

General Captioning

Caption: A large bus sitting next to a very tall building.

¹Chen et al. 2015

State-of-the-art performance for captioning & VQA tasks COCO¹ NoCaps² Novel object captioning

General Captioning

Caption: A large bus sitting next to a very tall building.

Caption: A crab cake sandwich on a hamburger bun.

¹Chen et al. 2015 ²Agrawal et al. 2019

State-of-the-art performance for captioning & VQA tasks NoCaps² COCO¹ General Captioning Novel object captioning

Caption: A large bus sitting next to a very tall building.

Caption: A crab cake sandwich on a hamburger bun.

¹Chen et al. 2015 ²Agrawal et al. 2019 ³Goyal et al. 2017

VQAv2³ General VQA

Q: What color is the hydrant? A: Black and Yellow

State-of-the-art performance for captioning & VQA tasks NoCaps² COCO¹ General Captioning Novel object captioning

Caption: A large bus sitting next to a very tall building.

Caption: A crab cake sandwich on a hamburger bun.

¹Chen et al. 2015 ²Agrawal et al. 2019 ³Goyal et al. 2017 ⁴Marino et al. 2019

Outside Knowledge

OKVQA⁴

Q: What company makes this sneakers? A: Converse

VQAv2³ **General VQA**

Q: What color is the hydrant? A: Black and Yellow

State-of-the-art performance for captioning & VQA tasks COCO¹ NoCaps² General Captioning Novel object captioning

Caption: A large bus sitting next to a very tall building.

Caption: A crab cake sandwich on a hamburger bun.

GQA⁵ **Spatial Reasoning**

Q: On which side of the image is the man? A: Right

¹Chen et al. 2015 ²Agrawal et al. 2019 ³Goyal et al. 2017 ⁴Marino et al. 2019 ⁵Hudson et al. 2019

Outside Knowledge

OKVQA⁴

Q: What company makes this sneakers? A: Converse

VQAv2³ **General VQA**

Q: What color is the hydrant? A: Black and Yellow

State-of-the-art performance for captioning & VQA tasks NoCaps² COCO¹ Novel object captioning General Captioning

Caption: A large bus sitting next to a very tall building.

Caption: A crab cake sandwich on a hamburger bun.

Spatial Reasoning Unanswerable Questions

Q: On which side of the image is the man? A: Right

¹Chen et al. 2015 ²Agrawal et al. 2019 ³Goyal et al. 2017 ⁴Marino et al. 2019 ⁵Hudson et al. 2019 ⁶Gurari et al. 2018

Outside Knowledge

OKVQA⁴

Q: What company makes this sneakers? A: Converse

VQAv2³ General VQA

Q: What color is the hydrant? A: Black and Yellow

GQA⁵

VizWiz-QA⁶

Q: Who is this mail for? A: Unanswerable

State-of-the-art performance for captioning & VQA tasks NoCaps² COCO¹ Novel object captioning General Captioning

Caption: A large bus sitting next to a very tall building.

Caption: A crab cake sandwich on a hamburger bun.

Spatial Reasoning Unanswerable Questions

Q: On which side of the image is the man? A: Right

¹Chen et al. 2015 ²Agrawal et al. 2019 ³Goyal et al. 2017 ⁴Marino et al. 2019 ⁵Hudson et al. 2019 ⁶Gurari et al. 2018

Outside Knowledge

OKVQA⁴

Q: What company makes this sneakers? A: Converse

VQAv2³ General VQA

Q: What color is the hydrant? A: Black and Yellow

GQA⁵

VizWiz-QA⁶

Q: Who is this mail for? A: Unanswerable

- State-of-the-art performance for captioning & VQA tasks
- Improved robustness against hallucinations & confusing images

POPE¹

Visual Hallucination

Q: Is there a bottle in the image? A: No.

Q: Is there a surfboard in the image? A: No.

¹Li et al. 2023 ²Tong et al. 2024

ptioning & VQA tasks nations & confusing images

MMVP² Confusing Pairs

Q: Are there cookies stacked on top of other cookies? A (Left): Yes - A (Right): No.

- State-of-the-art performance for captioning & VQA tasks
- Improved robustness against hallucinations & confusing images

¹Li et al. 2023 ²Tong et al. 2024

otioning & VQA tasks nations & confusing images

MMVP² Confusing Pairs

Q: Are there cookies stacked on top of other cookies? A (Left): Yes - A (Right): No.

- State-of-the-art performance for captioning & VQA tasks
- Improved robustness against hallucinations & confusing images

POPE¹

Visual Hallucination

Q: Is there a bottle in the image? A: No.

Q: Is there a surfboard in the image? A: No.

¹Li et al. 2023 ²Tong et al. 2024

otioning & VQA tasks nations & confusing images

- State-of-the-art performance for captioning & VQA tasks
- Improved robustness against hallucinations & confusing images

Quantitative results – Captioning

	# para	ams	COCO (fine-tuned)) NoCaps (zero	o-shot, val) NoCaps (zero	o-shot, test)
Method	Trainable	e Total	Karpathy test	out-domain	overall	out-domain	overall
Flamingo [3]	10.6B	80B	138.1	-	-	-	-
SimVLM [85]	632M	632M	143.3	113.7	112.2	-	110.3
Qwen-VL $[5]$	9.6B	9.6B	-	-	121.4	-	-
BLIP-2 [53]	1.1B	4.1B	144.5	124.8	121.6	-	-
InstructBLIP [23]	188M	14.2B	-	-	121.9	-	-
CoCa [90]	$2.1\mathrm{B}$	2.1B	143.6	-	122.4	-	120.6
GiT2 [81]	5.1B	5.1B	145.0	130.6	126.9	122.3	124.8
PaLI-17B [17]	16.9B	16.9B	149.1		127.0	126.7	124.4
BRAVE	116M	10.3B	148.0	133.3	127.6	127.1	125.6

Quantitative results – Captioning

	# para	ams	COCO (fine-tuned) NoCaps (zero	o-shot, val) NoCaps (zero	-shot, test)
Method	Trainable	Total	Karpathy test	out-domain	overall	out-domain	overall
Flamingo [3]	10.6B	80B	138.1	-	-	-	-
SimVLM [85]	632M	632M	143.3	113.7	112.2	-	110.3
Qwen-VL $[5]$	9.6B	9.6B	-	-	121.4	-	-
BLIP-2 [53]	$1.1\mathrm{B}$	4.1B	144.5	124.8	121.6	-	-
InstructBLIP [23]	188M	14.2B	-	-	121.9	-	-
CoCa [90]	$2.1\mathrm{B}$	2.1B	143.6	-	122.4	-	120.6
GiT2 [81]	$5.1\mathrm{B}$	5.1B	145.0	130.6	126.9	122.3	124.8
PaLI-17B [17]	16.9B	16.9B	149.1	-	127.0	126.7	124.4
BRAVE	116M	10.3B	<u>148.0</u>	133.3	127.6	127.1	125.6

Quantitative results – VQA

	# para	ams	I	Fine-tune	d		Zero-sh	ot	
Mothod	Trainable	Total	VQAv2	OKVQA	GQA	VizWiz-QA	GQA	MMVP	POPE
Method	Tramable	Iotai	test-dev	val	test-dev	test-dev	test-dev	test	test
SimVLM [91]	632M	632M	80.0	-	_	-	-	-	-
Flamingo [3]	10.2B	80B	82.0	57.8	-	31.6	-	-	-
MiniGPT-v2 [14]	7B	8B	-	57.8	60.1	<u>53.6</u>	-	-	-
GiT2 [87]	5.1B	5.1B	81.7	-	-	-	-	-	-
Qwen-VL $[6]$	9.6B	9.6B	79.5	58.6	59.3	35.2	-	-	-
SPHINX-2k [61]	13B	16.5B	80.7	62.6	63.1	44.9	-	-	87.2
PaLI-17B [19]	16.9B	16.9B	84.3	$\underline{64.5}$	-	-	-	-	-
BLIP-2 [56]	1.2B	12.1B	81.6	54.7	-	29.4	44.7	-	85.3
InstructBLIP $[25]$	188M	14.2B	-	55.5	-	33.4	$\underline{49.5}$	16.7	78.9
ShareGPT4V [16]	13.4B	13.4B	81.0	-	64.8	-	-	-	-
$LLaVA^{1.5}$ [64]	13B	13.4B	80.0	-	63.3	$\underline{53.6}$	-	24.7	85.9
$LLaVA^{1.6}$ [65]	13B	13.4B	-	46.3	$\underline{65.4}$	-	-	-	86.3
$LLaVA^{1.5}$ (I-MoF) [84]	13B	13.6B	79.3		_		_	31.3	86.7
BRAVE 😨	3B	10.3B	<u>82.5</u>	66.0	66.3	54.2	52.7	42.0	87.6

Quantitative results – VQA

	# para	ams	ŀ	Tine-tune	d		Zero-sh	ot	
			VQAv2	OKVQA	GQA	VizWiz-QA	GQA	MMVP	POPE
Method	Trainable	Total	test-dev	val	test-dev	test-dev	test-dev	test	test
SimVLM [91]	632M	632M	80.0	-	-	-	-	-	-
Flamingo [3]	10.2B	80B	82.0	57.8	-	31.6	-	-	-
MiniGPT-v2 [14]	7B	8B	-	57.8	60.1	53.6	-	-	-
GiT2 [87]	5.1B	5.1B	81.7	-	-	-	-	-	-
Qwen-VL $[6]$	9.6B	9.6B	79.5	58.6	59.3	35.2	-	-	-
SPHINX-2k [61]	13B	16.5B	80.7	62.6	63.1	44.9	-	-	87.2
PaLI-17B [19]	16.9B	16.9B	84.3	<u>64.5</u>	-	-	-	-	-
BLIP-2 [56]	1.2B	12.1B	81.6	54.7	-	29.4	44.7	-	85.3
InstructBLIP [25]	188M	14.2B	-	55.5	-	33.4	$\underline{49.5}$	16.7	78.9
ShareGPT4V [16]	13.4B	13.4B	81.0	-	64.8	-	-	-	-
$LLaVA^{1.5}$ [64]	13B	13.4B	80.0	-	63.3	$\underline{53.6}$	-	24.7	85.9
$LLaVA^{1.6}$ [65]	13B	13.4B	-	46.3	65.4	-	-	-	86.3
$LLaVA^{1.5}$ (I-MoF) [84]	13B	13.6B	79.3	-	-	-	-	31.3	86.7
BRAVE	3B	10.3B	$\underline{82.5}$	66.0	66.3	54.2	52.7	42.0	87.6

More results & analysis

- Qualitative results on captioning and VQA
- Ablations of design choices (training data, fine-tuning, LLM, etc.)
- Contribution of different vision encoders \bullet

BRAVE : Broadening the visual encoding of vision-language models Google EPF Swiss Federal Institute of Technology

•••••

Oğuzhan Fatih Kar Alessio Tonioni

Achin Kulshrestha

Amir Zamir

Federico Tombari

