

EUROPEAN CONFERENCE ON COMPUTER VISION

M I L A N O

BAD-Gaussians: Bundle Adjusted Deblur Gaussian Splatting

Lingzhe Zhao1Peng Wang^{1,2}Peidong Liu1

¹Westlake University ²Zhejiang University

https://lingzhezhao.github.io/BAD-Gaussians/

Result

Most 3D reconstruction methods learn 3D scene representations from accurately posed high-quality RGB images.

Mildenhall, Ben, et al. "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis.", 2020 ECCV

Motion blur is very common in real life!

oject

Blurry Input

3D reconstruction w/o motion blur modeling

Physical Motion Blur Image Formation Model

end

Camera Trajectory Representation

- Provide continuity constraints (usually holds IRL)
- Enable interpolation over time, reduce #parameters

Hug, David, et al. "Continuous-time stereo-inertial odometry." *IEEE Robotics and Automation Letters* 7.3 (2022): 6455-6462.

Target: Given blurred images, jointly optimize the sharp 3D scene representation and the camera motion trajectories within the exposure time.

Deblur-NeRF DP-NeRF 3DGS

BAD-NeRF

Reference

Accurate camera trajectory estimation

Give a star if you like it!

Thanks for watching!

Project Page https://lingzhezhao.github.io/BAD-Gaussians/