

EUROPEAN CONFERENCE ON COMPUTER VISION

MILANO 2024

EAGLES: Efficient Accelerated 3D Gaussians with Lightweight EncodingS

Sharath Girish, Kamal Gupta, Abhinav Shrivastava University of Maryland, College Park

ECCV 2024

Novel view synthesis Sparse view input of scene -> Novel view rendering

Sparse input views Novel view reconstruction

3D Gaussian Splatting (3D-GS)

Kerbl, Bernhard, et al. "3D Gaussian Splatting for Real-Time Radiance Field Rendering." *ACM Trans. Graph.* 42.4 (2023): 139-1.

3D Gaussian point clouds and the Novel view image synthesis

3D Gaussian attributes $f_i(p) = \sigma(\alpha_i) \exp(-\frac{1}{2}(p - \mu_i) \Sigma_i^{-1}(p - \mu_i))$

 $\mu_i \in \mathbb{R}^3 \quad q_i \in \mathbb{R}^4 \quad s_i \in \mathbb{R}^3 \quad \alpha_i \in \mathbb{R} \quad c_i \in \mathbb{R}^{3d^2}$ Position Rotation Scaling Opacity Color SH

Colmap initialization

SfM Points

Colmap SFM initialization of 3D Gaussian point clouds

Image rasterization

3D to 2D Gaussian projection

Image rasterization

3D to 2D Gaussian

Memory footprint of 3DGS

5 million Gaussians

3D Gaussian

representation

High resolution 3D scene (1600 x 1063)

Memory footprint of 3DGS

High resolution 3D scene (1600 x 1063)

5 million Gaussians

Per Gaussian memory: 0.25 KB

representation

Memory footprint of 3DGS

5 million Gaussians

Per Gaussian memory: 0.25 KB

representation

High per Gaussian memory cost Large number of Gaussians

High resolution 3D scene (1600 x 1063)

11

- Memory efficiency
	- Post-training storage memory

• Training and inference runtime memory (GPU RAM)

• Training and inference runtime memory (GPU RAM) • Post-training storage memory

- Memory efficiency
- Time efficiency
	- Training time
	- Rendering speed

• Training and inference runtime memory (GPU RAM) • Post-training storage memory

- Memory efficiency
- Time efficiency
	- Training time
	- Rendering speed

While maintaining reconstruction quality!

1. Quantize attributes for reducing memory storage costs of each Gaussian point.

-
-

1. Quantize attributes for reducing memory storage costs of each Gaussian point.

2. Utilize a coarse-to-fine training strategy for faster training and stable optimization of the Gaussians.

-
-
-

1. Quantize attributes for reducing memory storage costs of each Gaussian point. 2. Utilize a coarse-to-fine training strategy for faster training and stable optimization of the Gaussians. 3. Perform pruning of redundant Gaussians leading to fewer points for storage and rendering.

-
-

Latent

Attribute

Attribute quantization

N

End-to-end differentiable with decoder and straight-through estimator Qauantization aware training instead of post-training quantization recovers performance losses.

Attribute quantization

Coarse-to-fine training

Render images at progressively increasing resolution during training

Gaussian point cloud

Training Iterations

Coarse-to-fine training

Stable optimization along with faster convergence

Coarse-to-fine training

Gaussian pruning

Large number of redundant Gaussians

Define importance/saliency score for Gaussians on scene rendering

Remove least influential/important Gaussians

Influence score $i\!-\!1$

$W_{\rm i,p} = \alpha_i T_i = \alpha_i \prod (1-\alpha_j), \quad W_{\rm i} = \sum W_{\rm i,p}$ р Net influence of No computation overhead Gaussian i

Prune lowest s% Gaussians

25

Influence score

Low influence for transparent Gaussians (low opacity)

Influence score

Influence score

Low influence for small Gaussians affecting fewer pixels (low scaling attribute)

Influence pruning

(a) Gaussians before pruning (891K)

(d) Rendered view before pruning

(b) Gaussians after pruning (757K)

(e) Rendered view after pruning

(c) Pruned Gaussians (134K)

(f) Pruned Gaussians render

30

- Similar reconstruction quality as 3D-GS

14x reduction in storage memory

Lower training time and higher rendering speed

Similar results for wide variety of datasets Marginally outperforms 3D-GS in reconstruction quality

Reduced GPU runtime memory

Bicy Method Train 17.4G $3D-GS$ **EAGLES** $10G$

Training and inference runtime memory is lower due to fewer number of Gaussians.

Ours (24.91.dB, 112 MB, 97 FPS)

Conclusion

- We compress per-point Gaussian attributes via an end-to-end learnable latent quantization framework.
- We introduce coarse-to-fine training to improve optimization stability of 3DGS while speeding up training.
- We develop a pruning stage to reduce redundant/insignificant Gaussians for lower memory and higher rendering speeds.

Visit us at poster session 6 on Thursday evening

(16:30 – 18:30) at ECCV 2024!

Project page with code:

Thank you