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Novel view synthesis

Sparse view input of scene -> Novel view rendering 

Sparse input views Novel view reconstruction
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3D Gaussian Splatting (3D-GS)

3D Gaussian point clouds Novel view image synthesis

Rendering
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Kerbl, Bernhard, et al. "3D Gaussian Splatting for Real-Time Radiance Field 
Rendering." ACM Trans. Graph. 42.4 (2023): 139-1.



3D Gaussian attributes

Position Rotation Scaling Opacity Color SH
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Colmap initialization

Colmap SFM initialization
of 3D Gaussian point clouds
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Image rasterization

3D to 2D Gaussian
projection
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Image rasterization

3D to 2D Gaussian
projection Rasterization
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Memory footprint of 3DGS

5 million Gaussians

3D Gaussian

representation
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High resolution 3D scene 
(1600 x 1063)



Memory footprint of 3DGS

High resolution 3D scene 
(1600 x 1063)

5 million Gaussians

Per Gaussian memory: 0.25 KB

Total storage memory: 1.25 GB3D Gaussian

representation
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Memory footprint of 3DGS

5 million Gaussians

Per Gaussian memory: 0.25 KB

Total storage memory: 1.25 GB3D Gaussian

representation

High per Gaussian memory cost Large number of Gaussians
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High resolution 3D scene 
(1600 x 1063)



Improving Efficiency Metrics
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Improving Efficiency Metrics

• Memory efficiency
• Training and inference runtime memory (GPU RAM)
• Post-training storage memory
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Improving Efficiency Metrics

• Memory efficiency
• Training and inference runtime memory (GPU RAM)
• Post-training storage memory

• Time efficiency
• Training time
• Rendering speed

While maintaining reconstruction quality!
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EAGLES: Efficient 3D Gaussian splatting
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EAGLES: Efficient 3D Gaussian splatting

1. Quantize attributes for reducing memory storage costs of each Gaussian point.
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EAGLES: Efficient 3D Gaussian splatting

1. Quantize attributes for reducing memory storage costs of each Gaussian point.

2. Utilize a coarse-to-fine training strategy for faster training and stable optimization of the Gaussians.

3. Perform pruning of redundant Gaussians leading to fewer points for storage and rendering.
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Straight-
Through

Rounding

Gradient
Flow

End-to-end differentiable with decoder and straight-through estimator

Qauantization aware training instead of post-training quantization recovers performance losses. 

Attribute quantization



Coarse-to-fine training

Render images at progressively increasing resolution during training 
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Coarse-to-fine training

Stable optimization along with faster convergence
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Coarse-to-fine training
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Gaussian pruning

Large number of redundant Gaussians

Define importance/saliency score for Gaussians on scene rendering

Remove least influential/important Gaussians 
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Influence score

Rasterization equation

Influence of 
Gaussian i at pixel p

No computation 
overhead

Net influence of 
Gaussian i

Prune lowest s% Gaussians
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Influence score

Low influence for transparent Gaussians (low opacity)
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Influence score

Low influence for occluded Gaussians (low transmittance)
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Influence score

Low influence for small Gaussians affecting fewer pixels (low scaling attribute)
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Influence pruning
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Quantitative results
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Quantitative results

Similar reconstruction quality as 3D-GS
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Quantitative results

14x reduction in storage memory
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Quantitative results

Lower training time and higher
rendering speed
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Quantitative results

Similar results for wide variety of datasets
Marginally outperforms 3D-GS in reconstruction quality
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Reduced GPU runtime memory

Training and inference runtime memory is lower due to fewer number of Gaussians.
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Qualitative results 
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Conclusion

• We compress per-point Gaussian attributes via an end-to-end learnable 
latent quantization framework.
• We introduce coarse-to-fine training to improve optimization stability of 

3DGS while speeding up training.
• We develop a pruning stage to reduce redundant/insignificant 

Gaussians for lower memory and higher rendering speeds.

Visit us at poster session 6 on Thursday evening 
(16:30 – 18:30) at ECCV 2024!

Project page with code:
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