

EUROPEAN CONFERENCE ON COMPUTER VISION

MILANO 2 0 2 4

EAGLES: Efficient Accelerated 3D Gaussians with Lightweight EncodingS

Sharath Girish, Kamal Gupta, Abhinav Shrivastava University of Maryland, College Park

ECCV 2024

Novel view synthesis Sparse view input of scene -> Novel view rendering

Sparse input views

Novel view reconstruction

3D Gaussian Splatting (3D-GS)

3D Gaussian point clouds

Kerbl, Bernhard, et al. "3D Gaussian Splatting for Real-Time Radiance Field Rendering." *ACM Trans. Graph.* 42.4 (2023): 139-1.

Novel view image synthesis

3D Gaussian attributes $f_i(p) = \sigma(\alpha_i) \exp\left(-\frac{1}{2}(p - \mu_i)\Sigma_i^{-1}(p - \mu_i)\right)$

Position

 $\mu_i \in \mathbb{R}^3 \quad q_i \in \mathbb{R}^4 \quad s_i \in \mathbb{R}^3 \quad lpha_i \in \mathbb{R} \quad c_i \in \mathbb{R}^{3d^2}$ Rotation Scaling Opacity

Color SH

Colmap initialization

SfM Points

Colmap SFM initialization of 3D Gaussian point clouds

Image rasterization

SfM Points

3D to 2D Gaussian projection

Image rasterization

3D to 2D Gaussian projection

Memory footprint of 3DGS

High resolution 3D scene (1600 x 1063)

3D Gaussian

representation

5 million Gaussians

Memory footprint of 3DGS

High resolution 3D scene (1600 x 1063)

3D Gaussian

representation

5 million Gaussians

Per Gaussian memory: 0.25 KB

Total storage memory: 1.25 GB

Memory footprint of 3DGS

High resolution 3D scene (1600 x 1063)

High per Gaussian memory cost

representation

5 million Gaussians

Per Gaussian memory: 0.25 KB

Total storage memory: 1.25 GB

Large number of Gaussians

10

11

- Memory efficiency
 - Post-training storage memory

Training and inference runtime memory (GPU RAM)

- Memory efficiency
- Time efficiency
 - Training time
 - Rendering speed

 Training and inference runtime memory (GPU RAM) Post-training storage memory

- Memory efficiency
 Training and infere
- Time efficiency
 - Training time
 - Rendering speed

While maintaining reconstruction quality!

Training and inference runtime memory (GPU RAM) Post-training storage memory

1. Quantize attributes for reducing memory storage costs of each Gaussian point.

- 1.
- 2.

Quantize attributes for reducing memory storage costs of each Gaussian point.

Utilize a coarse-to-fine training strategy for faster training and stable optimization of the Gaussians.

- 2.
- 3.

1. Quantize attributes for reducing memory storage costs of each Gaussian point. Utilize a coarse-to-fine training strategy for faster training and stable optimization of the Gaussians. Perform pruning of redundant Gaussians leading to fewer points for storage and rendering.

Attribute quantization

Ν

Latent

Decoder

Attribute

Attribute quantization

End-to-end differentiable with decoder and straight-through estimator Qauantization aware training instead of post-training quantization recovers performance losses.

Coarse-to-fine training

Render images at progressively increasing resolution during training

Gaussian point cloud

Training Iterations

Coarse-to-fine training

Stable optimization along with faster convergence

Coarse-to-fine training

Gaussian pruning

Define importance/saliency score for Gaussians on scene rendering

Large number of redundant Gaussians

Remove least influential/important Gaussians

Prune lowest s% Gaussians

$W_{i,p} = \alpha_i T_i = \alpha_i \prod (1 - \alpha_j), \quad W_i = \sum W_{i,p}$ pNet influence of No computation overhead Gaussian i

Low influence for transparent Gaussians (low opacity)

Low influence for small Gaussians affecting fewer pixels (low scaling attribute)

Influence pruning

(a) Gaussians before pruning (891K)

(d) Rendered view before pruning

(b) Gaussians after pruning (757K)

(e) Rendered view after pruning

(c) Pruned Gaussians (134K)

(f) Pruned Gaussians render

Dataset (\rightarrow)	Mip-NeRF360							
Method	PSNR ↑	FPS ↑	Train Time ↓					
Plenoxels	23.08	0.63	0.46	2.1GB	7	25m49s		
INGP	25.59	0.70	0.33	48MB	9	7m30s		
M-NeRF360	27.69	0.79	0.24	9MB	0.06	48h		
3D-GS	27.21	0.82	0.21	734MB	134	41m33s		
3D-GS*	27.45	0.81	0.22	745MB	110	23m20s		
EAGLES (Ours)	27.23	0.81	0.24	54MB	131	21m34s		
EAGLES-Small	26.94	0.80	0.25	47MB	166	17m3s		
EAGLES-Fast	26.99	0.81	0.23	71MB	111	16m24s		

30

Dataset (\rightarrow)	Mip-NeRF360							
Method	PSNR ↑	SSIM ↑	Storage Mem ↓	FPS ↑	Train Time ↓			
Plenoxels	23.08	0.63	0.46	2.1GB	7	25m49s		
INGP	25.59	0.70	0.33	48MB	9	7m30s		
M-NeRF360	27.69	0.79	0.24	9MB	0.06	48h		
3D-GS	27.21	0.82	0.21	734MB	134	41m33s		
3D-GS*	27.45	0.81	0.22	745MB	110	23m20s		
EAGLES (Ours)	27.23	0.81	0.24	54MB	131	21m34s		
EAGLES-Small	26.94	0.80	0.25	47MB	166	17m3s		
EAGLES-Fast	26.99	0.81	0.23	71MB	111	16m24s		

Similar reconstruction quality as 3D-GS

Dataset (\rightarrow)	Mip-NeRF360						
Method	PSNRSSIMLPIPSStorage \uparrow \uparrow \downarrow Mem \downarrow					Train Time ↓	
Plenoxels	23.08	0.63	0.46	2.1GB	7	25m49s	
INGP	25.59	0.70	0.33	48MB	9	7m30s	
M-NeRF360	27.69	0.79	0.24	9MB	0.06	48h	
3D-GS	27.21	0.82	0.21	734MB	134	41m33s	
3D-GS*	27.45	0.81	0.22	745MB	110	23m20s	
EAGLES (Ours)	27.23	0.81	0.24	54MB	131	21m34s	
EAGLES-Small	26.94	0.80	0.25	47MB	166	17m3s	
EAGLES-Fast	26.99	0.81	0.23	71MB	111	16m24s	

14x reduction in storage memory

Dataset (\rightarrow)	Mip-NeRF360							
Method	PSNR ↑	SSIM ↑	LPIPS ↓	Storage Mem ↓	FPS ↑	Train Time ↓		
Plenoxels	23.08	0.63	0.46	2.1GB	7	25m49s		
INGP	25.59	0.70	0.33	48MB	9	7m30s		
M-NeRF360	27.69	0.79	0.24	9MB	0.06	48h		
3D-GS	27.21	0.82	0.21	734MB	134	41m33s		
3D-GS*	27.45	0.81	0.22	745MB	110	23m20s		
EAGLES (Ours)	27.23	0.81	0.24	54MB	131	21m34s		
EAGLES-Small	26.94	0.80	0.25	47MB	166	17m3s		
EAGLES-Fast	26.99	0.81	0.23	71MB	111	16m24s		

Lower training time and higher rendering speed

Dataset (\rightarrow)			Mip-N	eRF360					Tanks&	Temples					Deep B	lending		
Method	PSNR ↑	SSIM ↑	LPIPS ↓	Storage Mem ↓	FPS ↑	Train Time ↓	PSNR ↑	SSIM ↑	$\downarrow^{\text{LPIPS}}$	Storage Mem ↓	FPS ↑	Train Time ↓	PSNR ↑	SSIM ↑	$\downarrow^{\text{LPIPS}}$	Storage Mem ↓	FPS ↑	Tra Tim
Plenoxels	23.08	0.63	0.46	2.1GB	7	25m49s	21.08	0.72	0.38	2.3GB	13	25m5s	23.06	0.80	0.51	2.7GB	11	2
INGP	25.59	0.70	0.33	48MB	9	7m30s	21.92	0.75	0.31	48MB	14	6m59s	24.96	0.82	0.39	48MB	3	
M-NeRF360	27.69	0.79	0.24	9MB	0.06	48h	22.22	0.76	0.26	9MB	0.14	48h	29.40	0.90	0.25	8.6MB	0.09	
3D-GS	27.21	0.82	0.21	734MB	134	41m33s	23.61	0.84	0.18	411MB	154	26m54s	29.41	0.90	0.24	676MB	137	3
3D-GS*	27.45	0.81	0.22	745MB	110	23m20s	23.63	0.85	0.18	430MB	157	12m5s	29.55	0.90	0.25	656MB	123	2
EAGLES (Ours)	27.23	0.81	0.24	54MB	131	21m34s	23.37	0.84	0.20	29MB	227	11m39s	29.86	0.91	0.25	52MB	130	2
EAGLES-Small	26.94	0.80	0.25	47MB	166	17m3s	23.10	0.82	0.22	19MB	272	10m7s	29.92	0.90	0.25	33MB	160	1
EAGLES-Fast	26.99	0.81	0.23	71MB	111	16m24s	23.02	0.83	0.20	38MB	190	8m43s	29.85	0.91	0.25	63MB	108	1

Similar results for wide variety of datasets Marginally outperforms 3D-GS in reconstruction quality

Reduced GPU runtime memory

MethodBicyTrain3D-GS17.4GEAGLES10G

Training and inference runtime memory is lower due to fewer number of Gaussians.

vcle Truck		uck	Play	room
Render	Train	Render	Train	Render
9.5G	8.5G	4.8G	9.6G	6.0G
7.4G	5.3G	3.6G	7.1G	5.3G

У	

Ours (24.91 dB, 112 MB, 97 FPS)

Conclusion

- We compress per-point Gaussian attributes via an end-to-end learnable latent quantization framework.
- We introduce coarse-to-fine training to improve optimization stability of 3DGS while speeding up training.
- We develop a pruning stage to reduce redundant/insignificant Gaussians for lower memory and higher rendering speeds.

(16:30 – 18:30) at ECCV 2024!

Visit us at poster session 6 on Thursday evening

Project page with code:

Thank you