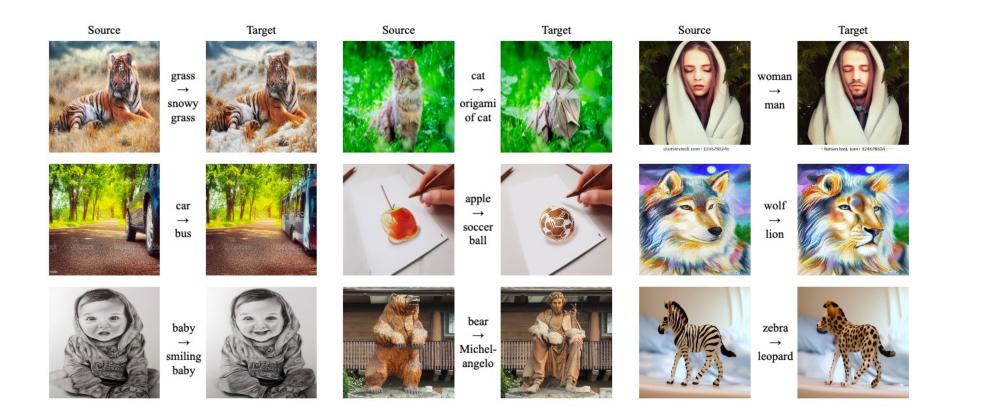
ECCV 2024

Diffusion-Based Image-to-Image Translation by Noise Correction via Prompt Interpolation

Junsung Lee¹, Minsoo Kang², Bohyung Han^{1,2}

¹ECE & ²IPAI, Seoul National University



Text-Driven Image-to-Image(I2I) Translation

- Transforming input images into other images aligned with target prompts
- Diffusion-based Method

Diffusion Process

- Forward Process: Input Images → Gaussian noises (Noising)
- Reverse Process: Gaussian noises \rightarrow Generated Images (Denoising)
- Shared U-Net

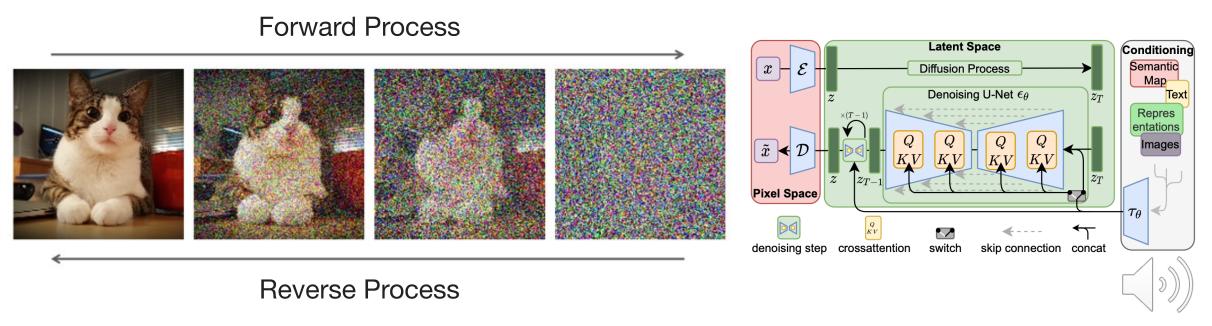
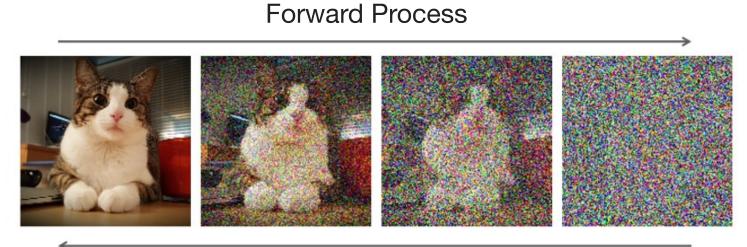
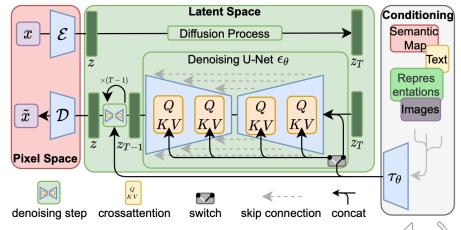


Image source: <u>https://pub.towardsai.net/gan-is-diffusion-all-you-need-5ef127fa4ca / https://arxiv.org/pdf/2112.10752</u>


- Derived as
$$f_{\theta}(\mathbf{x}_t, t, \mathbf{y}) = \frac{\mathbf{x}_t - \sqrt{1 - \alpha_t} \epsilon_{\theta}(\mathbf{x}_t, t, \mathbf{y})}{\sqrt{\alpha_t}}$$


- Forward Process

$$\mathbf{x}_{t+1}^{\mathrm{src}} = \sqrt{\alpha_{t+1}} f_{\theta}(\mathbf{x}_{t}^{\mathrm{src}}, t, \mathbf{y}^{\mathrm{src}}) + \sqrt{1 - \alpha_{t+1}} \epsilon_{\theta}(\mathbf{x}_{t}^{\mathrm{src}}, t, \mathbf{y}^{\mathrm{src}})$$

- Reverse Process

$$\mathbf{x}_{t-1}^{\text{tgt}} = \sqrt{\alpha_{t-1}} f_{\theta}(\mathbf{x}_t^{\text{tgt}}, t, \mathbf{y}^{\text{tgt}}) + \sqrt{1 - \alpha_{t-1}} \epsilon_{\theta}(\mathbf{x}_t^{\text{tgt}}, t, \mathbf{y}^{\text{tgt}})$$

Reverse Process

- Problem

The starting point of the reverse process $\mathbf{x}_T^{\text{tgt}}(=\mathbf{x}_T^{\text{src}})$ is different from its true position $\mathbf{x}_T^{\text{tgt}^*}$.

- Goal

Re-routing the reverse process without an additional training

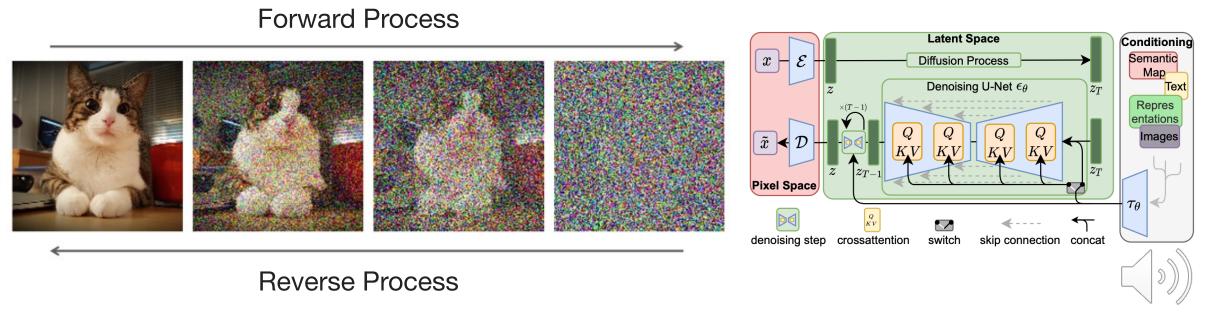


Image source: https://pub.towardsai.net/gan-is-diffusion-all-you-need-5ef127fa4ca / https://arxiv.org/pdf/2112.10752

Method

- Problem

The poor quality of I2I Translation when using naïve process

- Analysis

This occurs due to abrupt transition of text embeddings.

- Contribution

We introduce a correction term using prompt interpolation to smoothly edit source images.

Method: Correction Term

$$\hat{\epsilon}_{\theta}(\mathbf{x}_{t}^{\text{tgt}}, t, \mathbf{y}^{\text{tgt}}) := \epsilon_{\theta}(\mathbf{x}_{t}^{\text{src}}, t, \mathbf{y}^{\text{src}}) + \gamma \Delta \epsilon_{\theta}(\mathbf{x}_{t}^{\text{tgt}}, t, \mathbf{y}_{t})$$

- First term: Source Noise

Preserving the structure / background of source images

- Second term: Correction Term

Desired as the noise to edit specific regions

- Goal: How to get "Correction Term" without additional training?

$$\square)))$$

Method: Correction Term

$$\hat{\epsilon}_{\theta}(\mathbf{x}_{t}^{\text{tgt}}, t, \mathbf{y}^{\text{tgt}}) := \epsilon_{\theta}(\mathbf{x}_{t}^{\text{src}}, t, \mathbf{y}^{\text{src}}) + \gamma \Delta \epsilon_{\theta}(\mathbf{x}_{t}^{\text{tgt}}, t, \mathbf{y}_{t})$$
$$\Delta \epsilon_{\theta}(\mathbf{x}_{t}^{\text{tgt}}, t, \mathbf{y}_{t}) := \epsilon_{\theta}(\mathbf{x}_{t}^{\text{tgt}}, t, \mathbf{y}_{t}) - \epsilon_{\theta}(\mathbf{x}_{t}^{\text{tgt}}, t, \mathbf{y}^{\text{src}})$$

- Correction Term

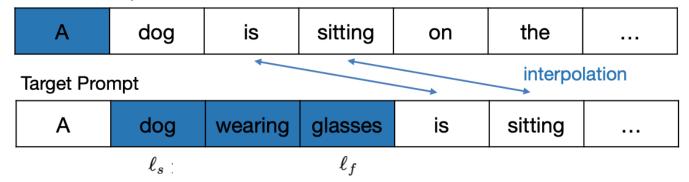
Difference between two noises conditioned by source embedding & interpolated embedding

- Interpolated Embedding \mathbf{y}_t

First steps: Similar to source embedding $\mathbf{y}^{\mathrm{src}}$ Final steps: Similar to target embedding $\mathbf{y}^{\mathrm{tgt}}$

Method: Prompt Interpolation

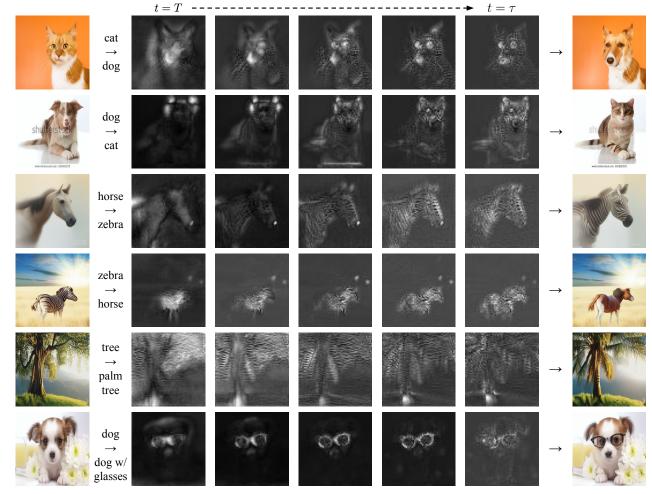
- Word Swap (dog \rightarrow cat)


 $\mathbf{y}_t[\ell] = \beta_t \mathbf{y}^{\text{tgt}}[\ell] + (1 - \beta_t) \mathbf{y}^{\text{src}}[\ell]$

- Adding Phrases (dog \rightarrow dog wearing glasses)

$$\mathbf{y}_t[\ell] = \begin{cases} \mathbf{y}^{\mathrm{src}}[\ell], & \text{if } \ell < \ell_s \\ \mathbf{y}^{\mathrm{tgt}}[\ell], & \text{if } \ell_s \le \ell \le \ell_f \\ \beta_t \mathbf{y}^{\mathrm{tgt}}[\ell] + (1 - \beta_t) \mathbf{y}^{\mathrm{src}}[\ell - \ell_f + \ell_s], & \text{if } \ell > \ell_f \end{cases}$$

- Coefficient
$$\beta_t := \beta + (1 - \beta) \times \frac{T - t}{T}$$


Source Prompt

Method: Prompt Interpolation

- Visualization of Correction Term

(a) Source

(b) Noise Correction at time step t

(c) Target

Method: PIC (Prompt Interpolation-based Correction)

- Pseudo Code

Algorithm 1 Target image generation by PIC

- Input: source image x₀^{src}, source prompt embedding y^{src}, target prompt embedding y^{tgt}, hyperparameters β, γ, τ
 for t (0 T 1 do
- 2: for $t \leftarrow 0, \cdots, T-1$ do
- 3: Compute $\epsilon_{\theta}(\mathbf{x}_{t}^{\text{src}}, t, \mathbf{y}^{\text{src}})$ and obtain $\mathbf{x}_{t+1}^{\text{src}}$ by Eq. (1) while saving $\epsilon_{\theta}(\mathbf{x}_{t}^{\text{src}}, t, \mathbf{y}^{\text{src}})$ 4: end for
- 5: $\mathbf{x}_T^{\text{tgt}} \leftarrow \mathbf{x}_T^{\text{src}}$
- 6: for $t \leftarrow T, \cdots, T \tau + 1$ do
- 7: Obtain \mathbf{y}_t based on \mathbf{y}^{src} and \mathbf{y}^{tgt} using Eq. (8) or Eq. (10) depending on the given task
- 8: Compute $\epsilon_{\theta}(\mathbf{x}_{t}^{\text{tgt}}, t, \mathbf{y}_{t})$ and $\epsilon_{\theta}(\mathbf{x}_{t}^{\text{tgt}}, t, \mathbf{y}^{\text{src}})$
- 9: Obtain the revised model $\hat{\epsilon}_{\theta}(\mathbf{x}_t^{\text{tgt}}, t, \mathbf{y}^{\text{tgt}})$ using Eq. (7)
- 10: Obtain $\mathbf{x}_{t-1}^{\text{tgt}}$ using Eq. (3) by replacing $\epsilon_{\theta}(\mathbf{x}_{t}^{\text{tgt}}, t, \mathbf{y}^{\text{tgt}})$ with $\hat{\epsilon}_{\theta}(\mathbf{x}_{t}^{\text{tgt}}, t, \mathbf{y}^{\text{tgt}})$
- 11: **end for**
- 12: for $t \leftarrow T \tau, \cdots, 1$ do
- 13: Obtain $\mathbf{x}_{t-1}^{\text{tgt}}$ using Eq. (3)

14: **end for**

15: **Output:** target image $\mathbf{x}_0^{\text{tgt}}$

- 250 images in LAION-5B Dataset for 6 tasks
- Stable Diffusion v1.4, 50 diffusion steps
- Hyperparameters: $\gamma = 1.0$, $\tau = 25$, $\beta = 0.3$ (word swap) & 0.8 (adding phrases)
- Comparison with other image translation models
 - Prompt-to-Prompt (PtP)
 - Plug-and-Play (PnP)
 - Pix2Pix-Zero (P2P)
- 3 metrics
 - CS (CLIP Similarity)
 - BD (Background Distance)
 - SD (Structure Distance)

- Quantitative comparison with other algorithms

Black: Best Performance / Red: Second-best Performance

Task	PtP			PnP				P2P		PIC (Ours)		
	$CS(\uparrow)$	BD (\downarrow)	SD (\downarrow)	$CS(\uparrow)$	BD (\downarrow)	$SD(\downarrow)$	$CS(\uparrow)$	BD (\downarrow)	$SD(\downarrow)$	$CS(\uparrow)$	BD (\downarrow)	$SD(\downarrow)$
$\mathrm{dog} \to \mathrm{cat}$	0.290	0.076	0.038	0.293	0.100	0.032	0.281	0.127	0.099	0.293	0.045	0.031
$\operatorname{cat} \to \operatorname{dog}$	0.288	0.095	0.042	0.291	0.099	0.033	0.282	0.100	0.054	0.288	0.057	0.033
$\mathrm{horse} \to \mathrm{zebra}$	0.320	0.133	0.042	0.333	0.158	0.042	0.323	0.193	0.078	0.324	0.085	0.037
zebra \rightarrow horse	0.291	0.183	0.051	0.299	0.152	0.043	0.282	0.216	0.104	0.292	0.126	0.050
tree \rightarrow palm tree	0.315	0.147	0.045	0.314	0.122	0.039	0.314	0.129	0.046	0.314	0.085	0.036
$\mathrm{dog} \to \mathrm{dog} \; w/\mathrm{glasses}$	0.310	0.041	0.020	0.302	0.087	0.025	0.322	0.050	0.015	0.312	0.026	0.016
Average	0.302	0.113	0.040	0.305	0.120	0.036	0.301	0.136	0.066	0.304	0.071	0.034

- Qualitative comparison with other algorithms

- Quantitative comparison: [Algorithms] vs [Algorithms] + PIC

Prompt-to-Prompt (PtP), Plug-and-Play (PnP), Pix2Pix-Zero (P2P)

	I	PtP		D4T	P + PIC (O									
Task	CS (†)	BD (\downarrow)	$SD(\downarrow)$	$CS(\uparrow)$		$SD(\downarrow)$								
$dog \rightarrow cat$	0.290	0.076	0.038	0.283	BD (↓) 0.051	0.021								
$\operatorname{cat} \to \operatorname{dog}$	0.288	0.095	0.038 0.042	0.285	0.051 0.052	0.021 0.027	Source		Alg	Alg + PIC (Ours)	Source		Alg	Alg + PIC (Ours)
horse \rightarrow zebra	0.320	0.133	0.042	0.291	0.071	0.018	Jouroo			ing vite (out)				ing ine (ouis)
$zebra \rightarrow horse$	0.291	0.183	0.051	0.292	0.131	0.034	n Nurth		oris (1990) (Star) (St.	A Marth			和自己的意思。	2011日1日1日
tree \rightarrow palm tree	0.315	0.147	0.045	0.301	0.070	0.026	SN. MINE	ant		A Call		mahma		
$dog \rightarrow dog w/glasses$	0.310	0.041	0.020	0.301	0.038	0.011		cat	Sedt		A A A A A A A A A A A A A A A A A A A	zebra		
Average	0.302	0.113	0.040	0.295	0.069	0.023	Y	\rightarrow				\rightarrow		
							11 Sta	dog	Harin Mir	William Carl		horse	THE REPORT OF	
							La Surger Vice		and the second second	1 UM Company	A Standard			
		PnP		PnF	P + PIC (C	urs)	Still and and			a tall to be had	6 ConSteval Photo com		6 Canthow Flick aon	@ Cantitus/Pitcle.com
Task	CS (†)	BD (\downarrow)	$SD(\downarrow)$	$CS(\uparrow)$	BD (↓)	$SD(\downarrow)$								
$dog \rightarrow cat$	0.293	0.100	0.032	0.282	0.092	0.027					SHE MARK		She have been	STATE/
$\operatorname{cat} \to \operatorname{dog}$	0.291	0.099	0.033	0.288	0.083	0.028			and a second		Sales Contractor		SAMON T	E. C. Carlos
$\mathrm{horse} \to \mathrm{zebra}$	0.333	0.158	0.042	0.317	0.121	0.035		dog	TAS	6.00		tree	June 1995	
zebra \rightarrow horse	0.299	0.152	0.043	0.285	0.135	0.037		\rightarrow				\rightarrow		
tree \rightarrow palm tree	0.314	0.122	0.039	0.295	0.070	0.024		cat				palm	140	- HI COMP
$\mathrm{dog} \to \mathrm{dog} \ w/\mathrm{glasses}$	0.302	0.087	0.025	0.300	0.085	0.024	A ALL SHE	cut	A Garage	A Las North	Contraction of the	tree	ANT AND	
Average	0.305	0.120	0.036	0.295	0.098	0.029	CONTRACT OF CO		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A PAR & P			and the second	
													Contraction of the second	
							2757 K			100			A CONTRACTOR OF	
Task		P2P			P + PIC (O		Mahall	dog						
	$CS(\uparrow)$	BD (\downarrow)	SD (\downarrow)	$CS(\uparrow)$	BD (\downarrow)	$SD(\downarrow)$		\rightarrow			Aller	horse		AMININ
$\mathrm{dog} \to \mathrm{cat}$	0.281	0.127	0.099	0.282	0.051	0.017					The second	\rightarrow	ENI	(UMMS)
$\operatorname{cat} \to \operatorname{dog}$	0.282	0.100	0.054	0.285	0.056	0.016		dog w				zebra		
$horse \rightarrow zebra$	0.323	0.193	0.078	0.309	0.070	0.016		glasses						
zebra \rightarrow horse	0.282	0.216	0.104	0.279	0.117	0.017								
tree \rightarrow palm tree	0.314	0.129	0.046	0.298	0.047	0.014					NAMESA AND AND A DOUBLE OF A DAY OF A DESCRIPTION OF A DOUBLE O		JAX (9)	
$\mathrm{dog} \to \mathrm{dog} \; \mathrm{w/glasses}$	0.322	0.050	0.015	0.302	0.053	0.011	_							
Average	0.301	0.136	0.066	0.293	0.066	0.015	-							
														· ·

- Inference Time (Evaluation on A6000 GPU)

	PtP	PnP	P2P	PIC (Ours)
Inference time (s)	31.2	24.4	52.2	18.1

- Contribution of Noise Correction(NC) and Prompt Interpolation(PI)

Including both NC and PI achieves better performance than others.

Task		DDIM		DDIM+PI			D	DIM+N	C	PIC (Ours)		
	$CS(\uparrow)$	BD (\downarrow)	SD (\downarrow)	$CS(\uparrow)$	BD (\downarrow)	SD (\downarrow)	$CS(\uparrow)$	BD (\downarrow)	SD (\downarrow)	$CS(\uparrow)$	BD (\downarrow)	$SD(\downarrow)$
$\mathrm{dog} \to \mathrm{cat}$	0.289	0.158	0.086	0.289	0.130	0.070	0.293	0.054	0.038	0.293	0.045	0.031
$\operatorname{cat} \to \operatorname{dog}$	0.283	0.185	0.089	0.285	0.150	0.070	0.288	0.068	0.041	0.288	0.057	0.033
$\mathrm{horse} \to \mathrm{zebra}$	0.325	0.287	0.123	0.330	0.214	0.097	0.333	0.113	0.050	0.324	0.085	0.037
zebra \rightarrow horse	0.294	0.295	0.104	0.294	0.254	0.097	0.294	0.139	0.055	0.292	0.126	0.050
tree \rightarrow palm tree	0.304	0.234	0.088	0.306	0.222	0.084	0.312	0.085	0.056	0.314	0.085	0.036
$\mathrm{dog} \to \mathrm{dog} \ w/\mathrm{glasses}$	0.318	0.134	0.072	0.310	0.132	0.065	0.317	0.029	0.021	0.312	0.026	0.016
Average	0.302	0.216	0.094	0.302	0.184	0.081	0.306	0.081	0.044	0.304	0.071	0.034

Thank you!

https://github.com/JS-Lee525/PIC

leejs0525@snu.ac.kr

