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Motivations
• Unraveling visual encoding of dynamic visual 

scenes is an important topic
• Foundation vision models have paved an advanced 

way of understanding image pixels
• Exploring a new perspective on the quantitative 

analysis of retina’s capabilities



Salamander Retina Ganglion Cells (RGC) Neural Spikes

(Arno Onken, Jian K. Liu, and et al., Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains, 2016)

Stimuli: Nature Scene Video (30Hz, 360x360px)

RGCs Response (Firing Rate)
• Utilize the Multielectrode recordings for 90 RGCs

Mov1: 1800 Frames                        Mov2: 1600 Frames
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Highlights
• Introducing Vi-ST, a spatiotemporal convolutional

network with a pre-trained ViT as a prior
• Detailed ablation experiments for demonstrating 

the significance of modules

• Introducing a visual coding evaluation metric, 
named SD-KL

• Comparing the impact of different numbers of 
neuronal populations on complementary coding.



The Architecture of Vi-ST
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• Capture the multi-scale spatial-temporal features
• Incorporate the biological RGC receptive field information



The Architecture of Vi-ST
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Spike Duration: from non-spike to non-spike



Loss Function

α, β, and γ are hyperparameters, and we set them to 0.1, 0.5, and 5×10−6, respectively. 

Soft Dynamic Time Warping (SoftDTW) 
• Unlike Euclidean losses such as RMSE, considers potential 

time shifts or variations of length of durations
• Using rolling windows to avoid predicting longer time 

windows may lead to distortion and difficulty in 
representing local abrupt changes 

Negative ReLU function: penalty term

Root Mean Square Error (RMSE): Euclidean loss

(Cuturi, M., Blondel, M.: Soft-DTW: a Differentiable Loss Function for Time-Series) 6



Better Generalization
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Model* Mov1 → Mov1 Mov2 → Mov2

CRNN 0.857 0.718

I3D+MSTCN 0.846 0.668

DINOv2+MSTCN 0.849 0.672

Vi-ST 0.789 0.570

Model** Mov1 → Mov2 Mov2 → Mov1

I3D+MSTCN 0.108 0.074

DINOv2+MSTCN 0.101 0.100

Vi-ST 0.334 0.281

* training and testing data are taken from the 
same video where pixel context is conserved

** training and testing data are taken from the 
different video

Vi-ST gives better the generalization ability



Metrics

Pearson correlation coefficient (CC) :
While CC considers the macro trends of the entire sequence, it lacks an attention for temporal information

Spike Duration - Kullback-Leibler Divergence (SD-KL) :
Consider the detailed consideration of temporal information or dynamics over time
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• Selects the lengths of corresponding 
subsequences in the response sequence, 
representing the duration of a complete 

neural response (from non-spike to non-spike). 

• Then, compare the similarity of distribution 
which are calculated by Kernel Density 
Estimation, by KL divergence.



Discussion 
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(a) Ablation Study (Mov1 → Mov2)

(b) The layer number of DINOv2 are represented 
as L − n, e.g. L − 1 represents the first layer 

SD-KL: Smaller is better

(c) Comparison of Euclidean and non-Euclidean loss



1. The CC of 90 RGCs predicted by the model are sorted, 

focusing on the top 8 RGCs;

2. The experiment uses encodings of 90, 64, 32, 16, 8, and 1 

to make predictions;

3. The top 8 RGCs’CC from step 1 are then compared;

4. The results represent the average CC of the top 8 RGCs

Is it optimal to construct an end-to-end model capable of simultaneously predicting all neural responses? 

(Ding, X., Lee, D., Melander, J.B., Sivulka, G., Ganguli, S., Baccus, S.A.: Information Geometry of the Retinal Representation Manifold)
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Discussion: Comparison of benefits of complementary coding
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