SA-DVAE: Improving Zero-Shot Skeleton-Based Action Recognition by Disentangled Variational Autoencoders

(₩

Sheng-Wei Li, Zi-Xiang Wei, Wei-Jie Chen, Yi-Hsin Yu, Chih-Yuan Yang, Jane Yung-jen Hsu

Research Published in European Conference on Computer Vision, 2024

Background and Motivation

Motivation

Modern action recognition models (CNN^[1], GCN^[2]) require large amounts of data to learn effectively.

However, collecting and annotating large amounts of data can be impractical for several reasons:

- Rarity of action classes
- High expense and time consumption
- Concerns over privacy

This study focuses on the challenge of limited data availability in action recognition tasks, where some of the rare classes have no samples.

I.e., Zero-Shot Learning

Challenges in GZSL^[1]

• Seen Class Bias: Predictions are usually biased towards the seen classes.

Illustration of misclassification of unseen classes into seen classes

• **Domain Shift:** The distributions of the seen and unseen classes may be different.

Zero-Shot Learning on Action Recognition

Reference: [1] Syntactically Guided Generative Embeddings for Zero-Shot Skeleton Action Recognition.

SynSE: Generative Embedding Space with VAE

Observations and Proposed Method

Observations about the Generative Alignment Module

While reproducing SynSE...

Loss Value of Reconstructing Skeletons from Text

Loss Value of Reconstructing Text from Skeletons

Reconstructing **skeletons from text** is much more difficult than reconstructing **text from skeletons**.

Observations

Reconstructing **skeletons from text** is much more difficult than reconstructing **text from skeletons**.

For action recognition datasets:

- Skeletons contain both **semantic info** and **instance-specific style** e.g., person, viewpoint, etc.
- Class labels contain **only semantic info**
- \rightarrow The both modalities are asymmetrical.

Observations

Since the both modalities are asymmetrical,

- → Design asymmetrical VAEs by applying feature disentanglement.
 Skeleton Encoder encodes the feature into:
 - a. Semantic-related: Skeleton latent (zs)
 - b. Semantic-unrelated: Instance style latent (zis)

Review SynSE: Reconstruct Skeletons From Text

Review SynSE: Reconstruct Text From Skeletons

zt

Cross-Alignment Loss

Text Encoder

Text

Feature

Extractor

Semantic

info.

wear on

glasses.

rts

Text Decoder

Semantic info.

from Skeleton

Stage 2: Seen and Unseen Classifier The unseen classifier handles unseen class predictions

Stage 3: Seen/Unseen Domain Classifier^[1] The seen/unseen domain classifier hinders the model from being biased toward seen classes.

Seen class skeleton

Summary

Introduced feature disentanglement for a more generalized representation:

Datasets, Evaluation Protocols, and State-of-the-Arts

Evaluation Protocol

Evaluation Metric:

ZSL: Accuracy

GZSL: Harmonic mean of seen class accuracy and unseen class accuracy.

State-of-the-Arts

Direct Mapping

Generative Embedding \prec Space

ReViSE (ICCV 2017):

Uses a maximum mean discrepancy to align the embedding spaces. **JPoSE** (ICCV 2019):

Performs fine-grained text-to-skeleton retrieval using PoS tags.

CADA-VAE (CVPR 2019):

Learns a shared latent space for both modalities via aligned VAEs.

• **SynSE** (ICIP 2021):

Following CADA-VAE, infuses the latent space with PoS syntactic info.

MSF (ICIG 2023):

Augments the semantic text descriptions with human annotators.

Contrastive Learning

SMIE (ACM MM 2023):

Optimizes a shared multi-modal latent space using contrastive learning.

Goal:

To have a system-level comparison with state-of-the-arts.

Scenario:

To have a direct compare to SynSE^[1], we use the **pre-extracted** skeleton features as supplied in their codebase.

The skeleton feature extractor employed in the study is Shift-GCN^[2], while the text feature extractor utilized is CLIP^[3].

Table 3: ZSL accuracy (%) on the NTU RGB+D datasets.

Method	NT	'U-60	NTU-120			
Weblied	55/5 split	48/12 split	110/10 split	96/24 split		
ReViSE [13]	53.91	17.49	55.04	32.38		
JPoSE [25]	64.82	28.75	51.93	32.44		
CADA-VAE [22]	76.84	28.96	59.53	35.77		
SynSE [8]	75.81	33.30	62.69	38.70		
SMIE [29]	77.98	40.18	65.74	45.30		
SA-DVAE	82.37	41.38	68.77	46.12		

Table 4: GZSL metrics: seen class accuracy Acc_s , unseen class accuracy Acc_u , and their harmonic mean H (%) on the NTU RGB+D datasets. *: SynSE paper reports 29.22, but it is a miscalculation.

		NTU-60						NTU-120					
Method	55/5 split		48/12 split		110/10 split			96/24 split					
	Acc_s	Acc_u	Н	Acc_s	Acc_u	Н	Acc_s	Acc_u	Н	Acc_s	Acc_u	Н	
ReViSE [13]	74.22	34.73	47.32*	62.36	20.77	31.16	48.6	9 44.84	46.68	49.66	25.06	33.31	
JPoSE [25]	64.44	50.29	56.49	60.49	20.62	30.75	47.6	$5\ 46.40$	47.05	38.62	22.79	28.67	
CADA-VAE [22]	69.38	61.79	65.37	51.32	27.03	35.41	47.1	$5\ 49.78$	48.44	41.11	34.14	37.31	
SynSE [8]	61.27	56.93	59.02	52.21	27.85	36.33	52.5	1 57.60	54.94	56.39	32.25	41.04	
SA-DVAE	62.28	70.80	66.27	50.20	36.94	42.56	61.1) 59.75	60.42	58.82	35.79	44.50	

We generate 3 random sets of unseen classes and report the average performance.

Ablations:

- Naive Alignment: Disables the style head.
- +FD: Enable feature disentanglement to the skeleton VAE.
- SA-DVAE (+FD +TC): Combined FD with total correlation penalty.

ZSL Performance

Method	$\begin{array}{c} {\rm NTU-60}\\ {\rm 55/5~split} \end{array}$	$\frac{\text{NTU-120}}{110/10 \text{ split}}$	$\begin{array}{c} {\rm PKU-MMD} \\ {\rm 46/5 \ split} \end{array}$
ReViSE [13] JPoSE† [25] CADA-VAE [22] SynSE† [8] SMIE [29]	$60.94 \\ 59.44 \\ 61.84 \\ 64.19 \\ 65.08$	$\begin{array}{c} 44.90 \\ 46.69 \\ 45.15 \\ 47.28 \\ 46.40 \end{array}$	59.34 57.17 60.74 53.85 60.83
Naive alignment FD SA-DVAE (FD+TC)	69.26 82.21 84.20	39.73 49.18 50.67	60.13 60.97 66.54

Ablations:

- Naive Alignment: Disables the "style" head.
- +FD: Enable feature disentanglement to the skeleton VAE.
- SA-DVAE (+FD +TC): Combined FD with total correlation penalty.

GZSL Performance

Method	m NTU-60 $ m 55/5~splits$			m NTU-120 $ m 110/10~split$			$\begin{array}{c} {\rm PKU-MMD} \\ {\rm 46/5 \ split} \end{array}$		
	Acc_s	Acc_u	Н	Acc_s	Acc_u	Н	Acc_s	Acc_u	Н
ReViSE [13]	71.75	52.06	60.34	48.29	34.64	40.34	60.89	42.16	49.82
JPoSE † [25]	66.25	54.92	60.05	49.43	39.14	43.69	60.26	45.18	51.64
CADA-VAE 22	77.35	58.14	66.38	51.09	41.24	45.64	63.17	35.86	45.75
SynSE † [8]	75.84	60.77	67.47	41.73	45.36	43.47	63.09	40.69	49.47
Naive alignment	82.11	47.99	60.58	57.01	31.62	40.68	58.76	43.14	49.75
FD	82.31	61.98	70.71	58.57	37.83	45.97	58.11	48.15	52.66
SA-DVAE (FD+TC)	78.16	72.60	75.27	58.09	40.23	47.54	58.49	51.40	54.72

Ablations:

- Naive Alignment: Disables the "style" head.
- +FD: Enable feature disentanglement to the skeleton VAE.
- SA-DVAE (+FD +TC): Combined FD with total correlation penalty.

Summary, Contributions, and Future Work

Learning a generalized representation from only seen classes persists as a challenge.

Contributions:

- Proposed a new method, SA-DVAE, to address the asymmetry in action recognition datasets and improve generalizability of the model.
- We show through experiments that our proposed feature disentanglement and adversarial total correlation penalty are effective on different datasets, class labels, and feature extractors.
- Sets new benchmarks for the NTU-60, NTU-120, and PKU-51 datasets.

Inference Dataflow

Unseen Class Classifier

Cross-Alignment Difficulty

+FD and SA-DVAE actually makes cross-reconstruction from text to skeleton much easier when compared to SynSE.