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Background and Motivation

Introduction
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Motivation
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Modern action recognition models (CNN[1], GCN[2]) require large amounts of data 
to learn effectively.

However, collecting and annotating large amounts of data can be impractical for 
several reasons:

● Rarity of action classes
● High expense and time consumption
● Concerns over privacy

This study focuses on the challenge of limited data availability in action 
recognition tasks, where some of the rare classes have no samples.

I.e., Zero-Shot Learning

Reference:
[1] Revisiting Skeleton-based Action Recognition.
[2] Skeleton-Based Action Recognition with Shift Graph Convolutional Network.

https://openaccess.thecvf.com/content/CVPR2022/papers/Duan_Revisiting_Skeleton-Based_Action_Recognition_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Cheng_Skeleton-Based_Action_Recognition_With_Shift_Graph_Convolutional_Network_CVPR_2020_paper.pdf


Challenges in GZSL[1]
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● Domain Shift: The distributions of the 
seen and unseen classes may be different.

● Seen Class Bias: Predictions are usually 
biased towards the seen classes.

Reference:
[1] A Review of Generalized Zero-Shot Learning Methods.

Illustration of misclassification of unseen classes into seen classes

Illustration of seen/unseen domain shift.
   : The semantic embeddings,      : The image samples

https://arxiv.org/pdf/2011.08641.pdf


Zero-Shot Learning on Action Recognition

Related Work
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SynSE: Maximize ELBO
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SynSE: Cross-Alignment

8

fs

Skeleton Encoder

ft

Text Encoder Text Decoder

rts

rtt

Reconstructed Text feature 
from Skeleton

zs

zt

Cross-Alignment Loss

Cross-Alignment Loss

Skeleton Decoder

rss

rst Reconstructed Skeleton feature 
from Text

Skeleton 
Feature 

Extractor

Text 
Feature 

Extractor

wear on 
glasses.



Aligned 
latent space
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Observations and Proposed Method

Methodology
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Observations about the Generative Alignment Module
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Loss Value of Reconstructing Skeletons from Text Loss Value of Reconstructing Text from Skeletons

While reproducing SynSE…

Reconstructing skeletons from text is much more difficult than 
reconstructing text from skeletons.



Observations
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Reconstructing skeletons from text is much more difficult than 
reconstructing text from skeletons.

For action recognition datasets:

● Skeletons contain both semantic info and instance-specific style
e.g., person, viewpoint, etc.

● Class labels contain only semantic info

→ The both modalities are asymmetrical.



Observations
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Since the both modalities are asymmetrical,

→ Design asymmetrical VAEs by applying feature disentanglement.

Skeleton Encoder encodes the feature into:

a. Semantic-related: Skeleton latent (zs)

b. Semantic-unrelated: Instance style latent (zis)
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Review SynSE
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Review SynSE: Cross-Alignment
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SA-DVAE
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SA-DVAE
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SA-DVAE: Cross-Alignment
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SA-DVAE: Cross-Alignment
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SA-DVAE: Cross-Alignment
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SA-DVAE: Maximize ELBO
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Aligned latent 
space

Stage 1: Aligned VAEs
Feature disentanglement helps the model learn 
a more general semantic-rich latent space
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Stage 2: Seen and Unseen Classifier
The unseen classifier handles unseen class predictions
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Stage 3: Seen/Unseen Domain Classifier[1]

The seen/unseen domain classifier hinders the model 
from being biased toward seen classes.

27Reference:
[1] Adaptive Confidence Smoothing for Generalized Zero-Shot Learning.

Seen Class Classifier

Unseen Class Classifier

ls

lu

Seen/Unseen

Seen/Unseen 
Domain Classifier

Skeleton 
Feature 

Extractor

Skeleton Encoder

Skeleton 
Feature 

Extractor

Seen class skeleton

“Unseen”class skeleton 
(from training split held-out split)
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System Diagram



Summary
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 Introduced feature disentanglement for a more generalized representation:
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Datasets, Evaluation Protocols, and State-of-the-Arts

Experiments

30

4



Evaluation Metric:

ZSL: Accuracy

GZSL: Harmonic mean of seen class accuracy and unseen class accuracy. 

Evaluation Protocol

31Arithmetic Mean VS Harmonic Mean of x and (1-x)



State-of-the-Arts

● ReViSE (ICCV 2017):
Uses a maximum mean discrepancy to align the embedding spaces.

● JPoSE (ICCV 2019): 
Performs fine-grained text-to-skeleton retrieval using PoS tags.

● CADA-VAE (CVPR 2019): 
Learns a shared latent space for both modalities via aligned VAEs.

● SynSE (ICIP 2021): 
Following CADA-VAE, infuses the latent space with PoS syntactic info.

● MSF (ICIG 2023):
Augments the semantic text descriptions with human annotators.

● SMIE (ACM MM 2023):
Optimizes a shared multi-modal latent space using contrastive learning.

32
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Performance Comparison to SOTAs
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Goal:

To have a system-level comparison with state-of-the-arts.

Scenario:

To have a direct compare to SynSE[1], we use the pre-extracted skeleton 
features as supplied in their codebase.

The skeleton feature extractor employed in the study is Shift-GCN[2], while 
the text feature extractor utilized is CLIP[3].

Reference:
[1] Syntactically Guided Generative Embeddings for Zero-Shot Skeleton Action Recognition.
[2] Skeleton-Based Action Recognition with Shift Graph Convolutional Network.
[3] Learning Transferable Visual Models From Natural Language Supervision.

https://arxiv.org/pdf/2101.11530.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Cheng_Skeleton-Based_Action_Recognition_With_Shift_Graph_Convolutional_Network_CVPR_2020_paper.pdf
http://proceedings.mlr.press/v139/radford21a/radford21a.pdf


Performance Comparison to SOTAs
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Performance Comparison to SOTAs
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Performance Comparison to SOTAs
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We generate 3 random sets of unseen classes and report the average performance.

Ablations:

● Naive Alignment: Disables the style head.
● +FD: Enable feature disentanglement to the skeleton VAE.
● SA-DVAE (+FD +TC): Combined FD with total correlation penalty.



ZSL Performance
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Ablations:

● Naive Alignment: Disables the “style” head.
● +FD: Enable feature disentanglement to the skeleton VAE.
● SA-DVAE (+FD +TC): Combined FD with total correlation penalty.



GZSL Performance
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Ablations:

● Naive Alignment: Disables the “style” head.
● +FD: Enable feature disentanglement to the skeleton VAE.
● SA-DVAE (+FD +TC): Combined FD with total correlation penalty.



Summary, Contributions, and Future Work

Conclusion

39



Conclusion
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Learning a generalized representation from only seen classes persists as a challenge.

Contributions:
● Proposed a new method, SA-DVAE, to address the asymmetry in action 

recognition datasets and improve generalizability of the model.

● We show through experiments that our proposed feature disentanglement and 
adversarial total correlation penalty are effective on different datasets, class 
labels, and feature extractors.

● Sets new benchmarks for the NTU-60, NTU-120, and PKU-51 datasets.
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Inference Dataflow
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Cross-Alignment Difficulty
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– SynSE – +FD – SA-DVAE – SynSE – +FD – SA-DVAE

Loss Value of Reconstructing Skeletons from Text Loss Value of Reconstructing Text from Skeletons

+FD and SA-DVAE actually makes cross-reconstruction from text to skeleton 
much easier when compared to SynSE.


