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Introduction
« Problem:
- Estimate the 6DoF pose of an object from an 1image
 Challenge:
- Existing methods require labeled real data.
o Synthetic data are accurate, and more efficiently generated.

Key Contributions
« Novel Approach: pseudo-keypoints for self-supervised learning of
6DoF pose estimation.
« RKHS Framework: Application of RKHS to learn a robust mapping
from pseudo-keypoints to object pose.
« Efficiency: Achieve competitive performance without the need for real
labeled data, reducing the need for expensive data annotation.

Methodology

« Pseudo-keypoints: points estimated using a synthetically pre-trained
network by overlaying the CAD model onto the real image (synireal).

« Reproducing Kernel Hilbert Space (RKHS): RKHS to model and
learn the relationships between these pseudo-keypoints and the object's
pose 1n a self-supervised manner, by mapping the feature spaces of the
network with real image and synl/real image into the statistically
comparable RKHS.

 Self-Supervision: learns from the structure of the data itself, without
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Fig. 2: RKHSPose architecture. RKHPose 1s first trained on synthetic labeled data (solid arrows), and then finetuned on alternating syn/real and (unlabeled) real images (dashed arrows). MA 1s measured by

MMD 1in RKHS by densely mapping the interlimediate features of Mr into high dimensional spaces with conv blocks. The distance 1s treated as LMA and back-propagated through MA and Mr.

labeled real datasets.

models

Fig. 1. RKHSPose adapts the network pretrained on synthetic data to real test scenes (left), by comparing network feature spaces with real imag
inputs (solid arrows), against those with syn/real image (right) inputs (dashed arrows). Mr regresses radial quantities, MA 1s the Adapter

network, and RKHS maps features into a higher dimensional space.
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RKHSPose: Pseudo-keypoint RKHS Learning for Self-supervised 6DokF Pose Estimation
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Metric ARvsp ARyssp ARyspp AR
MMD  84.9 84.1 84.3 84.4
KL Div  78.0 77.8 780 77.9
Wass  80.9 80.6 80.9 80.8
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Fig.3: Impact of # of real images with/without GT labels used during training. All

datasets are evaluated by the BOP AR metric. We conduct experiments from 0 to 640
real images on all datasets, except ITODD which contained only 357 real images.
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Performance: The method achieves SOTA results on

standard benchmarks, demonstrating its effectiveness

in real-world scenarios, as shown 1n Table 1.

Comparisons: It even outperforms traditional

methods that rely on real data supervision, as shown

in Table 2.

Table 1: Comparison with other methods. Accuracy of RKHSPose for LM and LMO is
evaluated with ADD(S), and for YCB is evaluated with ADD(S) AUC. All ‘Supervision:

Syn + Self’ methods use real images without real labels.

Dataset/Metric

Real data

LM LMO

YCB

Method . ADD(S) ADD-S
image label ADD(S) AUC  AUC

Supervision: Syn (lower bound)
AAE X X 314 - - -
MHP X X 388 - - -
GDR (TexPose version) X X 774 52.9 - -
Self6D-++ X X 774 529 T7.8 89.4
Self6D-+-+ with D, X X 88.0 62.5 79.2 90.1
Ours X X 782 543 T76.5 90.2
Ours+I1CP X X 87.9 55.7 T78.3 91.3

Supervision: Syn + Self
Sock et al. X 60.6 22.8 - -
DSC X DH8.6 24.8 - -
Self6D X 589 32.1 - -
SMOC-Net X 91.3 63.3 - -
Self6D-++ X 885 64.7 80.0 91.4
TexPose X 91.7 66.7 - -
Ours X 95.8 68.6 82.8 92.4
Ours+1CP y X 95.9 68.7T 83.0 92.6

Supervision: Syn + Real GT (upper bound)
SO-Pose y v 96.0 62.3 83.9 90.9
Self6D-++ y v 91.0 744 826 90.7
Ours y v 96.7 70.8 854 92.2
Ours+I1CP y v 96.8 7T1.3 85.6 92.4

Table 2 : Comparison with fully supervised methods. RKHSPose results on TLESS
(—1.8), TUDL (—0.4), ITODD (—4.6) and HB (40.1) compares to SOTA methods

with full supervision of real GT labels. Methods annotated with * use the detection

results from other detection methods.

Method real Dataset

label LM LMO TLESS TUDL ITODD HB YCB
SurfEmb* [30] /- T76.0 828 854 659 86.6 79.9
RCVPose3D [82] /S - 729 70.8 96.6 T73.3 86.3 84.3
RADet [87]+PFA* [39] v - 79.7 850 96.0 67.6 86.9 88.8
ZebraPose [70) /- 780 86.2 956 654 92.1 89.9
Ours X 957 68.2 855 96.2 686 92.2 83.6
Ours+ICP X 958 68.4 85.6 96.2 68.7 92.3 83.8

Conclusion

Impact: This work provides a significant step towards more

autonomous and scalable 6DoF pose estimation.

Future Work: The potential for extending this approach to
more complex scenes and objects, as well as integrating 1t into

real-time systems.
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