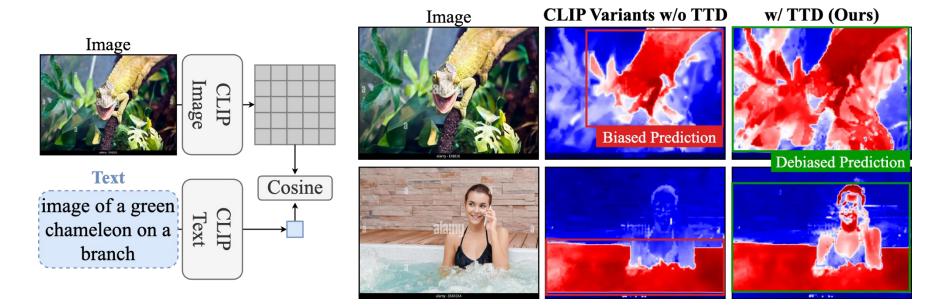
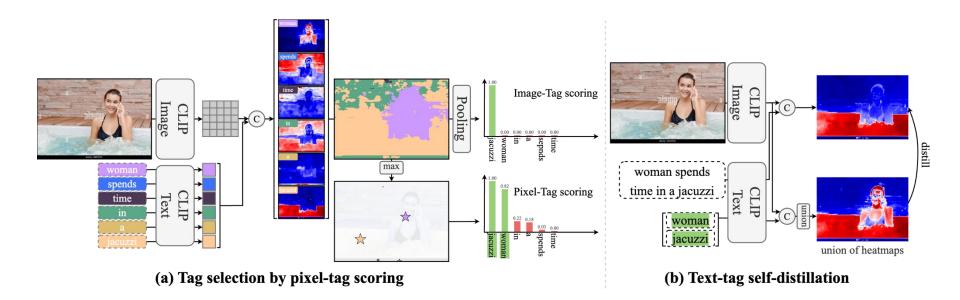
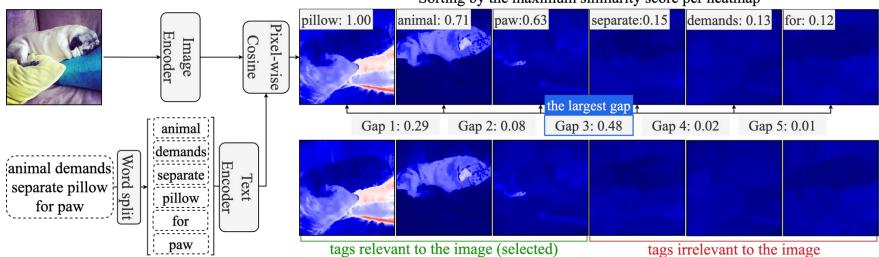
TTD: Text-Tag Self-Distillation Enhancing Image-Text Alignment in CLIP to Alleviate Single Tag Bias


Sanghyun Jo*, Soohyun Ryu*, Sungyub Kim, Eunho Yang, Kyungsu Kim

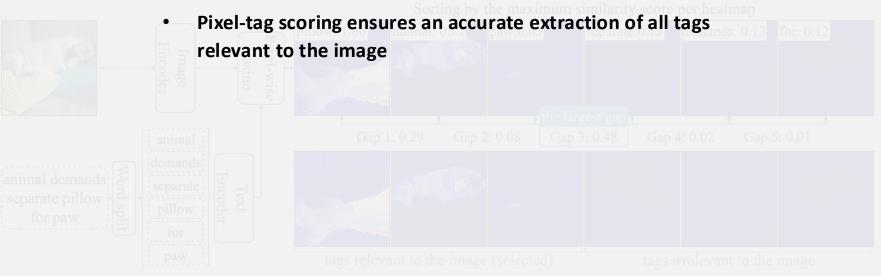
Problem: Single Tag Bias in CLIP-based Models


• **Single tag bias** manifests as a disproportionate focus on a singular tag (word) while neglecting other pertinent tags.

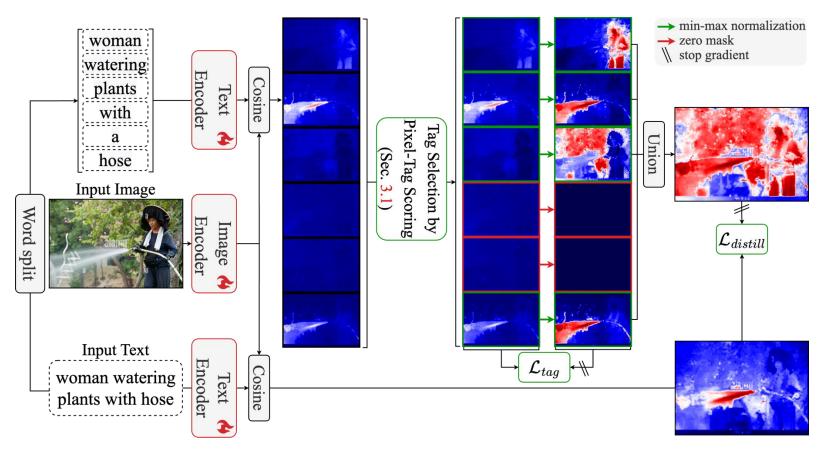
a green chameleon on a branch

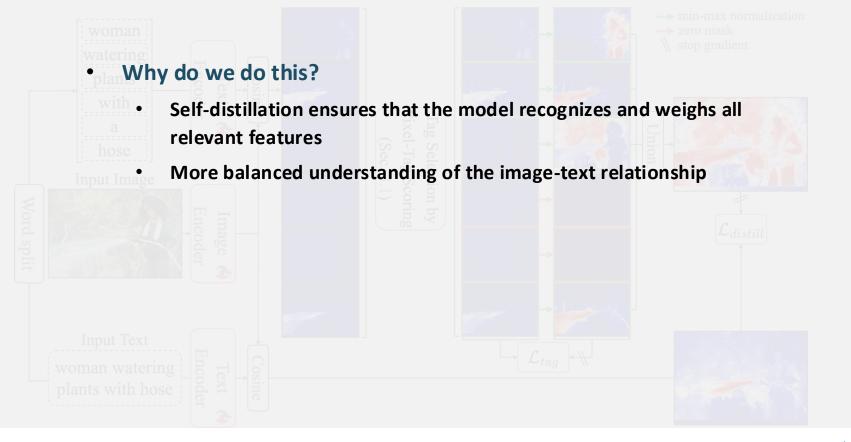


- Two-step fine-tuning approach that effectively mitigates single tag bias
 - Enables models to recognize all relevant tags
- Model-agnostic
- No external supervision is required


- Step1) Tag Selection by Pixel-Tag Scoring
 - Identify which tags in the text are relevant to the image
 - Move from global to pixel-level embedding
 - Score tags based on their correlation with specific image regions

Sorting by the maximum similarity score per heatmap


- Step1) Tag Selection by Pixel-Tag Scoring
 - Identify which tags in the text are relevant to the image
 - Move from global to pixel-level embedding
 - Score tags based on their correlation with specific image regions
 - Why do we do this?
 - Global embedding often overemphasizes the dominant tag


• Step2) Text-Tag Self-Distillation

- Generate a composite mask using multiple tags
- Self-distillation ensures the model learns to align the text with the composite mask

- Step2) Text-Tag Self-Distillation
 - Generate a composite mask using multiple tags
 - Self-distillation ensures balanced image-text alignment

Experiments: Multi-Tag Selection

• Tag selection using external models

- Extracting Image-irrelevant Tags (red)
- Overlooking Image-relevant Tags (blue)

Image	Ground Truth	NLTK	Vicuna-33B	Qwen-72B	Ours		
T	grilled pork ribs	grilled pork ribs	grilled pork ribs	grilled pork ribs	grilled pork ribs		
	on the baking tray	on the baking tray	on the baking tray	on the baking tray	on the baking tray		
	businessman with	businessman with	businessman with	businessman with	businessman with		
	laptop and cellphone	laptop and cellphone	laptop and cellphone	laptop and cellphone	laptop and cellphone		
	sitting on rocks	sitting on rocks	sitting on rocks	sitting on rocks	sitting on rocks		
	by the sea	by the sea	by the sea	by the sea	by the sea		
	mountains reflected	mountains reflected	mountains reflected	mountains reflected	mountains reflected		
	in a lake on the road	in a lake on the road	in a lake on the road	in a lake on the road	in a lake on the road		
	/ is moored at the buoy .	/ is moored at the buoy .	/ is moored at the buoy .	/ is moored at the buoy .	/ is moored at the buoy .		
	correct tags misdetected tags undetected tags						

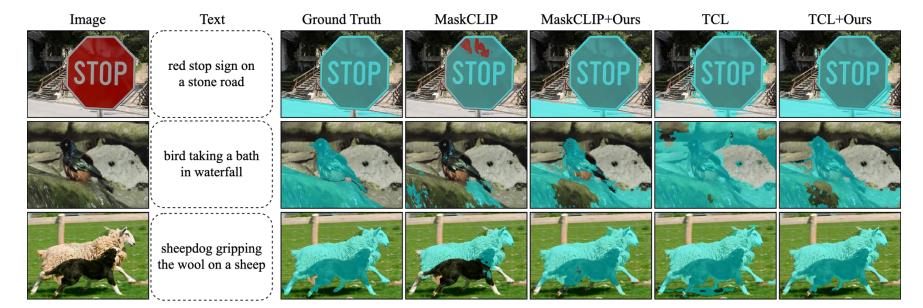
Quantitative results

- $s_{\rm image}$ tends to focus on a single dominant tag •
- F1 Score: 82.8% ٠
- Significant improvement over external models or baseline scoring methods •

Table 2: Multi-Tag Selection. The best results are **bold** and the second best results are underlined. P, precision; R, recall; F1, F1 score.

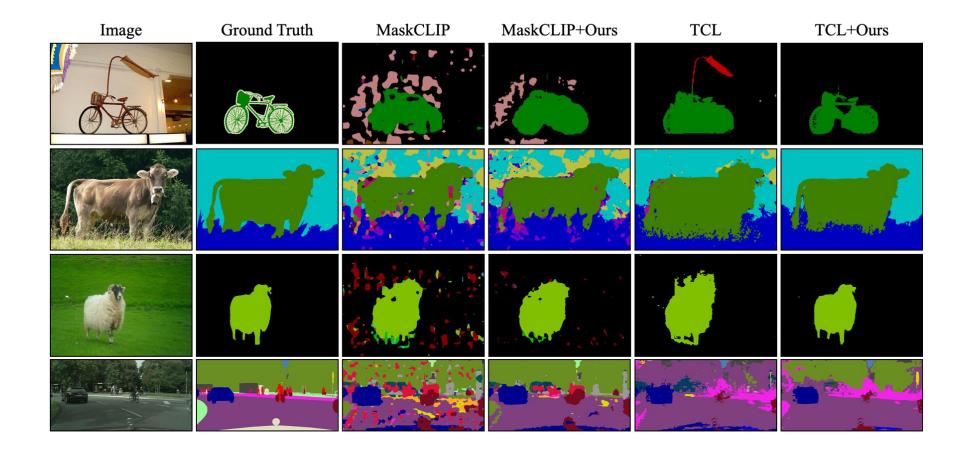
Method	Р	R	F1	Acc
NLTK	59.8	83.7	69.8	79.6
Vicuna-7B	44.1	71.0	54.4	70.9
Vicuna-33B	52.7	70.7	60.4	75.9
Qwen-72B	69.3	56.2	62.1	80.9

 $s_{\text{pixel}}^{\text{ours}}$ (Eq. (2)) <u>82.9</u> 74.5 <u>78.5</u> 88.6 + TTD (Ours) 88.3 78.0 82.8 91.0


(a)	Comparison based	on the use of NLP	models. (b)	Comparison	based	on scoring m	ethods.
-----	------------------	-------------------	-----------	----	------------	-------	--------------	---------

Scoring	Ρ	R	F1	Acc	mAP
$\frac{s_{\text{image}} \text{ (Eq. (1))}}{s_{\text{text}} \text{ (Eq. (7))}}$ $\frac{s_{\text{image}} + s_{\text{text}}}{s_{\text{image}} + s_{\text{text}}}$	85.6	29.7	$43.7 \\ 44.1 \\ 59.0$	79.0	82.1
$\overline{ s^{ m ours}_{ m pixel} ~({ m Eq.}~(2)) } + { m TTD}~({ m Ours})$	82.9 <u>88.3</u>	<u>74.5</u> 78.0	78.5 82.8	<u>88.6</u> 91.0	<u>90.3</u> 93.7

Experiments: Text-Level Segmentation


• CaptionIoU improvement: +9.2% for MaskCLIP, +5.1% for TCL

Method	CaptionIoU($\%$)	mFPR	mFNR
MaskCLIP [44]	41.0	0.179	0.411
+ TTD (Ours)	$50.2\;(+9.2)$	0.256	0.242
TCL $[4]$	60.4	0.199	0.198
+ TTD (Ours)	$65.5\;(+5.1)$	0.163	0.182

Experiments: Open-Vocabulary (Tag-Level) Segmentation

Experiments: Open-Vocabulary (Tag-Level) Segmentation

• mIoU improvement: +8.5% for MaskCLIP, +3.5% for TCL

Table 4: Open-Vocabulary Semantic Segmentation. The methods are all trained only with image and text data, without additional annotations or external models. We use ViT-B/16 as the backbone for all methods. \mathcal{L} , external language models.

Method	Train datasets	L	VOC	Context	Object	Stuff	City	ADE	Avg.
GroupViT [38]	CC12M+YFCC	1	51.1	19.0	27.9	15.4	11.6	9.4	22.4
ViewCo [33]	CC12M+YFCC	1	52.4	23.0	23.5	-	-	-	
CoCu [37]	$\rm CC3M+CC12M+COCO$	1	51.4	23.6	22.7	15.2	22.1	12.3	24.6
OVSegmentor [39]	CC4M [39]	1	53.8	20.4	25.1	_0	-	-	2 - 2
TagAlign [24]	$\rm CC12M$	1	53.9	33.5	33.3	25.3	27.5	17.3	31.8
ReCo [35]	ImageNet1K	×	25.1	19.9	15.7	14.8	21.1	11.2	18.0
ZeroSeg ^[6]	ImageNet1K	×	40.8	20.4	20.2	-	-	-	-
ViL-Seg [25]	CC12M	×	37.3	18.9	18.1	_	-	-	a - a
SimSeg [41]	$\rm CC3M+CC12M$	×	57.4	26.2	29.7	_	-	-	-
SegCLIP [27]	$\rm CC12M+COCO$	×	52.6	24.7	26.5	16.1	11.2	8.8	23.3
MaskCLIP [44]	-	×	29.3	21.1	15.5	14.7	21.6	10.4	19.0
+ TTD (Ours)	$\rm CC3M+CC12M$	X	43.1 (+13.8)	31.0 (+9.9)	26.5 (+11.0)	19.4 (+4.7)	32.0 (+10.4)	12.7 (+2.3)	27.5 (+8.5)
TCL [4]	$\rm CC3M+CC12M$	×	55.0	33.8	31.6	22.4	24.0	15.6	30.4
+ TTD (Ours)	$\rm CC3M+CC12M$	×	61.1 (+6.1)	37.4 (+3.6)	37.4 (+5.8)	23.7(+1.3)	27.0 (+3.0)	<u>17.0</u> (+1.4)	33.9 (+3.5)

Ablation

- Using both distillation and auxiliary losses yields best performance (+6.1% mIoU)
- Pixel-tag scoring outperforms standard tag selection methods (higher F1 and mIoU)

$\mathcal{L}_{distill}$ (Eq. (4))	$\mathcal{L}_{tag}(Eq. (5))$	CaptionIoU	mIoU
×	×	60.4	55.0
×	1	$60.7\ (+0.3)$	58.5 (+3.5)
1	×	$63.6 \ (+3.2)$	60.8(+5.8)
 Image: A second s	 Image: A second s	65.5 (+5.1)	61.1 (+6.1)

(a) Effect of Loss Terms.

(b) Effect of Tagging Method.

Method	CaptionIoU	U mIoU
Baseline [4]	60.4	55.0
NLTK [26]	61.8	56.5
$s_{ m image}~(m Eq.~(1))$ $s_{ m pixel}^{ m ours}~(m Eq.~(2))$	56.3 65.5	52.5 61.1

Conclusion

- Text-Tag Self-Distillation (TTD) addresses single tag bias in CLIP-based models
- Model-agnostic with no external data or model required
- Enhanced performance across three tasks: multi-tag selection, text-level segmentation, and open-vocabulary segmentation

Thank you !

