

ABSTRACT & INTRODUCTION

Learning Camouflaged Object Detection from Noisy Pseudo Label Jin Zhang¹ Ruiheng Zhang¹ Yanjiao Shi² Zhe Cao¹ Nian Liu³ Fahad Shahbaz Khan^{3,4}

¹Beijing Institute of Technology, China ²Shanghai Institute of Technology, China ³Mohamed bin Zayed University of Artificial Intelligence, UAE ⁴Linköping University, Linköping, Sweden

0.65

 $|p_i - g_i|$

IoU Loss

 $\sum_{i=1}^{H \times W}$

Even with box prompts, some predictions remain poor, and such pseudo-labels can negatively impact the model's gradient learning, leading to incorrect

Effect of	Losses	$\mid \mathcal{M}\downarrow$	$E_{\phi} \uparrow$	$F_{\beta}\uparrow$	
Noise	CE + IoU	0.027	0.910	0.780	
Correction	$\operatorname{CE} + \mathcal{L}_{NC}^{q=2.0}$	0.027 0.024	$0.912 \\ 0.922$	0.778 0.780	
Loss	\mathbf{C}_{NC} GCE [42]	0.024	0.922	0.759	
	\mathcal{L}_{NC}	0.023	0.932	0.792	

 (\mathbf{F})

METHOD & ALGORITHM

Let $\{x_t, gt\}$ be a pair of image and its noisy label. For any loss functions, the risk gradient of any

EXPERIMENT												
Model	Encoder	Annotation	$egin{array}{c} \mathbf{CAMO} \\ \mathcal{M} \downarrow \ E_{\phi} \uparrow \end{array}$	$\begin{array}{c} \mathbf{D} \ (250) \\ F_{\beta} \uparrow \ S_{\alpha} \uparrow \end{array}$	$\sim \begin{array}{c} \text{CH}_{2} \\ \mathcal{M} \downarrow \end{array} $	$\begin{array}{c} \mathbf{AMEI} \\ E_{\phi} \uparrow \end{array}$	$\begin{array}{c} \mathbf{LEON} \\ F_{\beta} \uparrow \end{array}$	$ \begin{array}{c} (76) \\ S_{\alpha} \uparrow \end{array} $	$\begin{vmatrix} \mathbf{C} \\ \mathcal{M} \downarrow \end{vmatrix}$	$\begin{array}{c} \mathbf{OD10} \\ E_{\phi} \uparrow \end{array}$	$\begin{array}{c} \mathbf{K} (202) \\ F_{\beta} \uparrow \end{array}$	$\frac{26)}{S_{\alpha}} \uparrow$
	Weakly Supervised Methods											
$WSSA^{20}$ [37]	ResNet-50	<i>S</i> 100%	0.118 0.686	0.632 0.69	6 0.067	0.860	0.719	0.782	0.071	0.770	0.598	0.684
$SCWS^{21}$ 35	ResNet-50	\mathcal{S} 100%	0.102 0.658	0.651 0.713	3 0.053	0.881	0.721	0.792	0.055	0.805	0.644	0.710
TEL^{22} [22]	ResNet-50	\mathcal{B} 100%	0.104 0.681	0.654 0.71	7 0.073	0.827	0.706	0.785	0.057	0.801	0.659	0.724
SCOD^{25} [14]	ResNet-50	$\mathcal{P} 100\%$	0.129 0.688	0.592 0.663	3 0.092	0.746	0.692	0.725	0.060	0.802	0.628	0.711
<u></u>	Fully Supervised Methods											
$SINet^{20}$ [9]	ResNet-50	$ $ $\mathcal{F} 100\%$	0.100 0.771	0.675 0.75	1 0.043	0.891	0.787	0.869	0.051	0.806	0.634	0.771
FEDER ²³ [13]	ResNet-50	$\mathcal{F} 100\%$	0.071 0.898	0.781 0.803	2 0.030	0.959	0.851	0.887	0.032	0.905	0.751	0.822
$SINetv2^{21}$ 7	Res2Net-50	$\mathcal{F} 100\%$	0.070 0.895	0.782 0.820	0 0.030	0.961	0.835	0.888	0.037	0.906	0.718	0.815
$BSA-Net^{22}$ [44]	Res2Net-50	$\mathcal{F} 100\%$	0.079 0.851	0.763 0.794	4 0.026	0.946	0.856	0.896	0.034	0.891	0.738	0.818
BGNet ²² $[32]$	Res2Net-50	$\mathcal{F} 100\%$	0.073 0.870	0.789 0.812	2 0.027	0.943	0.857	0.901	0.033	0.901	0.753	0.831
CamoFormer ²² [34	PVTv2-B4	$\mathcal{F} 100\%$	0.046 0.929	0.854 0.872	2 0.022	0.957	0.880	0.909	0.023	0.932	0.811	0.869
$FSPNet^{23}$ [16]	ViT-B16	$\mathcal{F} 100\%$	0.050 0.899	0.830 0.850	6 0.022	0.942	0.865	0.908	0.026	0.895	0.769	0.851
HitNet ²³ [15]	PVTv2-B2	$\mathcal{F} 100\%$	0.055 0.906	0.831 0.849	9 0.019	0.966	0.898	0.921	0.023	0.935	0.823	0.871
$MSCAF-Net^{23}$ [23]	PVTv2-B2	$\mathcal{F} 100\%$	0.046 0.929	0.852 0.873	3 0.022	0.958	0.874	0.911	0.024	0.927	0.798	0.865
	-		Pro	ompt Base	d Meth	nods						
SAM^{23} [19]	ViT-H	-	0.209 0.304	0.039 0.394	4 0.157	0.276	0.017	0.418	0.111	0.315	0.018	0.445
$SAM-P^{23}$ [19]	ViT-H	_	0.126 0.653	0.595 0.658	8 0.068	0.737	0.666	0.731	0.084	0.725	0.613	0.706
SAM-B ²³ $\overline{19}$	ViT-H	-	0.139 0.495	0.346 0.53	5 0.121	0.467	0.276	0.524	0.073	0.433	0.218	0.534
Weakly Semi-Supervised Methods												
$\bullet \mathbf{PNet}_{F1}$	PVTv2-B4	$ \mathcal{F} 1\% + \mathcal{B} 99\%$	0.051 0.922	0.835 0.855	2 0.038	0.921	0.812	0.847	0.031	0.903	0.745	0.828
$\bullet \mathbf{PNet}_{F5}$	PVTv2-B4	$\mathcal{F} 5\% + \mathcal{B} 95\%$	0.050 0.924	0.845 0.85	7 0.032	0.943	0.821	0.865	0.027	0.921	0.771	0.845
$\bullet \mathbf{PNet}_{F10}$	PVTv2-B4	$\mathcal{F} 10\% + \mathcal{B} 90\%$	0.048 0.925	0.841 0.86	1 0.028	0.949	0.830	0.878	0.024	0.927	0.782	0.855
$\bullet \mathbf{PNet}_{F20}$	PVTv2-B4	$\mathcal{F} 20\% + \mathcal{B} 80\%$	0.043 0.934	0.856 0.872	2 0.024	0.954	0.861	0.892	0.023	0.932	0.792	0.860
	DUT ₂ 9 R4	T 200% 1 B 240%	0 090 0 010	0 070 0 00	0 0 001	0.061	0 006	0 000	0.016	0 060	0 957	0 001

Compare with SOTA COD Methods

Effect of Noise Correction Loss

ACKNOWLEDGEMENT

We express our gratitude to all co-authors for their invaluable contributions to this paper. We also thank the reviewers and area chairs for their thoughtful reviews and recognition of our work.