OvSW: Overcoming Silent Weights for Accurate Binary Neural Networks

Jingyang Xiang¹, Zuohui Chen², Siqi Li¹,

Qing Wu³, Yong Liu¹

APRIL Lab, Zhejiang University, Hangzhou, China¹ IVSN, Zhejiang University of Technology, Hangzhou, China² College of Computer Science, Hangzhou Dianzi University³ <u>https://github.com/JingyangXiang/OvSW</u>

Overview: Binary Neural Network

Silent Weights

Histogram of the initialized weight distribution (blue) and the weights that never update signs throughout training (orange) for Vanilla BNNs. 37.02%, 46.02%, 40.44% and 54.07% represent the ratio of the corresponding orange area to the blue.

Parameter flip from vanilla BNNs. Massive weights don't flip!

Theoretical Analysis

$$\hat{\mathcal{W}}_{j} = \hat{\mathcal{W}}_{j}', \alpha_{j} = \alpha_{j}', \text{BN}_{j} = \text{BN}_{j}', \forall j, \Longrightarrow \mathcal{A}_{j+1} = \text{BN}\left(\left(\hat{\mathcal{A}}_{j} \circledast \hat{\mathcal{W}}_{j}\right) \odot \alpha_{j}\right) = \text{BN}'\left(\left(\hat{\mathcal{A}}_{j} \circledast \hat{\mathcal{W}}_{j}'\right) \odot \alpha_{j}'\right) = \mathcal{A}_{j+1}'.$$
(1)

$$\frac{\partial \mathcal{L}}{\partial \mathcal{W}_{j}} = \frac{\partial \mathcal{L}}{\partial \mathcal{A}_{j+1}} \frac{\partial \mathcal{A}_{j+1}}{\partial \hat{\mathcal{W}}_{j}} \frac{\partial \hat{\mathcal{W}}_{j}}{\partial \mathcal{W}_{j}} = \frac{\partial \mathcal{L}'}{\partial \mathcal{A}'_{j+1}} \frac{\partial \mathcal{A}'_{j+1}}{\partial \hat{\mathcal{W}}'_{j}} \frac{\partial \mathcal{A}'_{j+1}}{\partial \mathcal{W}'_{j}} = \frac{\partial \mathcal{L}'}{\partial \mathcal{W}'_{j}}.$$
(2)

$$\mathcal{W}_{j}^{'}(t+1) = \mathcal{W}_{j}^{'}(t) - \beta(t)\frac{\partial \mathcal{L}(t)}{\partial \mathcal{W}_{j}^{'}(t)} = \gamma \mathcal{W}_{j}(t) - \beta(t)\frac{\partial \mathcal{L}(t)}{\partial \mathcal{W}_{j}(t)} = (\gamma - 1)\mathcal{W}_{j}(t) + \mathcal{W}_{j}(t+1), \qquad (3)$$

$$\lim_{\gamma \to \infty} \mathcal{W}_{j}'(t+1) = \lim_{\gamma \to \infty} \left[(\gamma - 1) \mathcal{W}_{j}(t) + \mathcal{W}_{j}(t+1) \right] = (\gamma - 1) \mathcal{W}_{j}(t) .$$
(4)

the independence of the BNNs gradient from the latent weight distribution

Validation

 $\mathcal{W}_j \sim \text{Normal}(0, \lambda^2 \text{std}^2)$

 $\mathcal{W}_j \sim \text{Uniform}(-\lambda \text{bound}, \lambda \text{bound}),$

Overcome Silent Weights

- Adaptive Gradient Scaling (AGS)
- Silence Awareness Decaying (SAD)

$$\begin{split} \mathbf{AGS} \quad \overline{\mathcal{G}}_{j}^{k,l,m,n} &= \begin{cases} \lambda \frac{\|\mathcal{W}_{j}^{k}\|_{F}}{\|\mathcal{G}_{j}^{k}\|_{F}} \mathcal{G}_{j}^{k,l,m,n} & \text{if } \frac{\|\mathcal{G}_{j}^{k}\|_{F}}{\|\mathcal{W}_{j}^{k}\|_{F}} < \lambda, \\ \mathcal{G}_{j}^{k,l,m,n} & \text{otherwise.} \end{cases} & \|\mathcal{W}_{j}^{k}\|_{F} = \sqrt{\sum_{l=1}^{C_{\text{in}}^{j}} \sum_{m=1}^{K_{h}^{j}} \sum_{n=1}^{K_{w}^{j}} \mathcal{W}_{j}^{k,l,m,n}}. \\ \mathbf{SAD} \quad \mathcal{S}_{j}(t) &= m \cdot \mathcal{S}_{j}(t-1) + (1-m) \cdot \frac{|\text{sign}\left(\mathcal{W}_{j}\left(t\right)\right) - \text{sign}\left(\mathcal{W}_{j}\left(t-1\right)\right)|_{abs}}{2}, \\ \overline{\mathcal{G}}_{j}^{k,l,m,n}(t) &= \begin{cases} \overline{\mathcal{G}}_{j}^{k,l,m,n}(t) + \gamma \mathcal{W}_{j}^{k,l,m,n}(t), & \text{if } \mathcal{S}_{j}^{k,l,m,n}(t) < \sigma, \\ \overline{\mathcal{G}}_{j}^{k,l,m,n}(t), & \text{otherwise,} \end{cases} \end{split}$$

Experiments

ImageNet

Model	Method	Bit-width (W/A)	Top-1 Acc.(%)	Top-5 Acc.(%)
ResNet18	Full-precision	32/32	69.6	89.2
	XNOR [42]	1/1	51.2	73.2
	BiReal [34]	1/1	56.4	79.5
	IR-Net [40]	1/1	58.1	80.0
	RBNN [30]	1/1	59.9	81.9
	SiMaN [29]	1/1	60.1	82.3
	FDA-BNN [52]	1/1	60.2	82.3
	ReCU [53]	1/1	61.0	82.6
	OvSW (Ours)	1/1	61.6	83.1
	ReActNet [33]	1/1	65.9	86.1
	ReCU [53]	1/1	66.4	86.5
	\mathbf{OvSW}^* (Ours)	1/1	66.6	86.7
ResNet34	Full-precision	32/32	73.3	91.3
	XNOR++ [3]	1/1	57.1	79.9
	BiReal [34]	1/1	62.2	83.9
	IR-Net $[40]$	1/1	62.9	84.1
	RBNN [30]	1/1	63.1	84.4
	SiMaN [29]	1/1	63.9	84.8
	CMIM [45]	1/1	65.0	85.7
	ReCU [53]	1/1	65.1	85.8
	OvSW (Ours)	1/1	65.5	86.1

Flip Efficiency

Histogram of the initialized weight distribution (blue) and the weights that never update signs throughout training (orange) for Vanilla BNNs. 37.02%, 46.02%, 40.44% and 54.07% represent the ratio of the corresponding orange area to the blue.

Parameter flip from vanilla BNNs. Massive weights don't flip!

Histogram of the initialized weight distribution (blue) and the weights that never update signs throughout training (orange) for OvSW. 4.18%, 3.18%, 1.86% and 2.03% represent the ratio of the corresponding orange area to the blue.

OvSW: Overcoming Silent Weights for Accurate Binary Neural Networks

https://github.com/JingyangXiang/OvSW

Thank you!