

UNSQUEEZE [CLS] BOTTLENECK TO LEARN RICH REPRESENTATION

Qing Su, Shihao Ji Georgia State University

1 ARE THE CURRENT SSL METHODS GOOD ENOUGH?

Issues of multi-view methods

AP

- Implicit Clustering (IC): SimCLR, MoCo, BYOL, Barlow Twins, etc.
 Overfitting issue / under-compression ---> nuisance info.
- Explicit Clustering (EC): SwAV, DINO, etc.
 Underfitting issue / over-compression ---> information loss

Impact of	Compres	ssion of DINO
#epoch	300	800
lin. Topl	76.1	77.0 (+0.9)

41.6

Multi-level methods: DenseCL, DetCo, EsViT, iBOT, DINOv2 Misaligned semantic constraints or tasks ---> suboptimal

40.8 (-0.8)

Superscript in () denotes class label

Implicit Clustering

HOW TO LEARN MEANINGFUL REPRESENTATIONS WHILE PRESERVING MORE INFORMATION?

- Source of over-compression in Explicit-Clustering (EC) -based methods:
 - Radical hyperparameter settings,
 e.g., small number of centroids, small temperature.
 - *Chasing a sharper target distribution (in distillation-based methods such as DINO).
- Source of semantic misalignment in Multi-level SSL methods:
 - Fixed-size semantic constraints that misaligned with local semantic distribution, e.g., matching representations of blocks with fixed size (as in DenseCL, DetCo, EsViT).
 - Shared projector for objectives of different semantic types.
 e.g., tying projector for image-level semantics and local patch recovering (via MIM) (as in iBOT)

HOW TO LEARN MEANINGFUL REPRESENTATIONS WHILE PRESERVING MORE INFORMATION?

OUR REMEDY:

Natural Image Modeling

• A natural image should be mixture of semantic concepts:

 $oldsymbol{z}_2$

Smoothed feature distribution of a natural image

Mixture model of semantics

Stratified Random Sampling preserving image structure

Multi-model target distribution:

 $p(y|\boldsymbol{Z}) \approx 1/M \sum_{i=1}^{M} p(y|\hat{\boldsymbol{z}}_i), \quad ext{where} \quad \hat{\boldsymbol{z}}_i = ext{SA}(\boldsymbol{z}_i, \boldsymbol{Z}, \boldsymbol{Z}), \quad i \sim \mathcal{U}_i.$

• Learn an extra class token (cls+) to extract the "multi-modal" information.

OUR REMEDY:

-

4

• Leverage self-attention to extract representations that align with local context.

- Attention map serves as soft-masked pooling, applying semantically coherent constraint that reflects local context.

SRS ATTENTION MAP WITH QUERY AS LOCAL PATCH

Stratified random sampling for efficiency while preserving the image layout

OUR REMEDY:

UDI pipeline

5

MAIN RESULTS

• Performance on image-level and dense prediction downstream tasks

UDI achieves balanced improvement on both image-level (linear probing) and dense prediction task (MS-COCO) with 1.5% and 1.6 AP, respectively, with relatively small training budget.

						_
Objective	Arch.	#Views	Epoch^{\dagger}	Linear	AP^{bb}	
MoCov2	RN50	2	400	67.5	38.9	
DenseCL [67]	RN50	2	400	64.6(-2.9)	40.3 (+1.4))
ReSim [70]	RN50	2	400	66.1 (-1.4)	40.3 (+1.4))
DetCo 71	RN50	2	400	68.6 (+1.1)	40.1 (+1.2))
SimCLR [12]	RN50	2	200	65.4	40.5	
PixPro [12]	RN50	2	200	66.3 (+0.9)	40.9 (+0.5))
DINO [9]	ViT-S/16	10	1050	76.0	41.5	
Selfpatch [76]	ViT-S/16	10	1050	75.6 (-0.4)	42.1 (+0.6))
DINO [9]	Swin-T/14	10	1050	77.1	46.0	
EsViT [38]	Swin-T/14	10	1050	77.6 (+0.5)	46.2 (+0.2)
DINO [9]	ViT-S/16	12	1200	76.1	41.6	
iBOT [79]	ViT-S/16	12	1200	77.4 (+1.3)	41.7 (+0.1))
DINO [9]	ViT-S/16	12	1200	76.1	41.6	
UDI	ViT-S/16	12	1200	77.6 (+1.5)	43.2 (+1.6))

MAIN RESULTS

7

- Using the regular class token (UDI) V.S. using the extra class token (UDI+)
- Regular class token in UDI extracts more linearly separable features, resulting in better performance in low-shot learning.
- The extra class token in UDI (denoated by UDI+) captures more information from images, resulting in superior performance in transfer learning than the regular class token.

Method	Arch.	logistic 1%	regression 10%	fine-t 1%	uning 10%
SimCLRv2 [14]	RN50		_	57.9	68.1
BYOL [28]	RN50	—		53.2	68.8
SwAV 8	RN50			53.9	70.2
SCLRv2+SD	RN50	—	_	60.0	70.5
DINO 9	ViT-S/16	64.5	72.2	60.3	74.3
iBOT [79]	ViT-S/16	65.9	73.4	61.9	75.1
MSN 1	ViT-S/16	67.2		—	
UDI	ViT-S/16	66.7	74.1	65.8	76.4
\mathbf{UDI}_+	ViT-S/16	66.1	73.8	65.2	76.2

TAB. 2. LOW-SHOT LEARNING

TAB. 3. TRANSFER LEARNING

Method	ViT-S/16					
Method	Cif ₁₀	Cif_{100}	$INat_{18}$	INat ₁₉	Flowers	Car
Supervised [9]	99.0	89.5	70.7	76.6	98.2	92.1
BEiT 3	98.6	87.4	68.5	76.5	96.4	92.1
DINO 9	99.0	90.5	72.0	78.2	98.5	93.1
DINO+reg.	98.8	90.5	72.1	78.2	98.5	93.2
iBOT [79]	99.1	90.7	73.7	78.5	98.6	94.0
UDI	99.1	90.8	74.1	78.9	98.6	94.1
\mathbf{UDI}_+	99.1	91.3	74.8	79.7	98.9	94.0

VISUALIZATIONS

8

• Visualization of attention map using class token as a whole and per head. UDI promotes attention maps that are more diverse and contextually aligned, in contrast to more focused attention of other SSLs.

THANK YOU!

