

LNL+K: Enhancing Learning with Noisy Labels Through Noise Source Knowledge Integration

Siqi Wang, Bryan A. Plummer

Learning with Noisy Labels (LNL)

Learning with Noisy Labels (LNL)

LNL aims to train a high-performing model using noisy training data.

Challenges of Noise Detection 🤔

High Noise Ratio Cell painting images are labeled with treatments, but many treatments have little to no effect. This results in a noise ratio of over **50%**.

Challenges of Noise Detection 🤔

Similar Category

Similar Background

Dataset Meta-Data

"ANIMAL-10N dataset contains 5 pairs of confusing animals with a total of 55,000 images. **The 5 pairs are as following**: ..."

Confusion Matrix from Related work

Cell painting images are labeled with treatments, but many treatments have little to no effect. This results in a noise ratio of over **50%**.

Domain Knowledge Most weak treatment cells visually resemble the control class.

Q1: How can we integrate noise source knowledge into existing LNL methods?

- Method

Q2: How helpful is noise source knowledge?

- Experiments

Q3: What are insights for designing new LNL methods?

- Discussions

Method

 $y_{i} = c \leftrightarrow \widetilde{y_{i}} = c \wedge p(c|x_{i}) > \max(\{p(c_{n}|x_{i})|c_{n} \in D_{c-ns}\}). \quad (x_{i}, \widetilde{y_{i}}) \stackrel{\text{i-th sample in}}{\text{the dataset}} \{\widetilde{y_{i}}\}_{i=1}^{n} \stackrel{\text{noisy}}{\text{labels}} \{y_{i}\}_{i=1}^{n} \stackrel{\text{true}}{\text{labels}}$ $A \text{ Unified Framework} \qquad D_{c-ns} \stackrel{\text{Noise source}}{\text{classes for class } c} p(c|x_{i}) \stackrel{\text{Probability of sample } x_{i}}{\text{with clean label } c}$

Experiments (Dominant Noise)

Class A Class B

Class A with Dominant Noise

	CIFAR	-10	CIFAR-100		CHAMMI-CP	BBBC036
Noise ratio	0.5	0.8	0.5	0.8		
Baseline	$85.46{\scriptstyle \pm 0.25}$	$78.99{\pm}0.07$	41.41 ± 1.47	$27.03{\pm}0.12$	$71.54{\pm}0.45$	$63.49{\pm}0.62$
DualT	$83.70{\pm}0.04$	$46.96{\scriptstyle \pm 0.07}$	$27.04{\pm}0.07$	$19.94{\pm}0.04$	$70.73{\pm}0.17$	$61.54{\scriptstyle\pm0.61}$
GT-T	$85.24 {\pm} 0.06$	$76.03{\pm}0.04$	$48.39{\pm}0.21$	$35.96{\pm}0.04$	-	=
SOP	$86.94{\pm}0.37$	$80.65{\pm}0.71$	$55.78{\pm}0.68$	$45.94{\pm}0.62$	$77.55{\pm}0.23$	$60.94{\pm}0.38$
CRUST	$80.46{\scriptstyle \pm 0.17}$	$65.79{\pm}0.62$	$48.87{\pm}0.31$	$35.56{\pm}1.38$	$78.02{\pm}0.31$	$63.06{\scriptstyle \pm 0.65}$
$\operatorname{CRUST}^{+k}$	$\underline{87.19{\pm}0.08}$	$\underline{80.54{\pm}0.30}$	$\underline{51.56{\pm}0.31}$	$\underline{38.07{\pm}2.05}$	$\underline{\textbf{79.81}{\pm}0.56}$	$\underline{65.07}{\scriptstyle\pm0.71}$
FINE	$84.43{\scriptstyle\pm0.38}$	$75.45{\pm}0.74$	$52.87{\pm}0.98$	$39.45{\pm}0.25$	$67.27{\pm}0.82$	$56.80 {\pm} 0.87$
$FINE^{+k}$	$\underline{88.00{\pm}0.11}$	$\underline{80.52{\pm}0.28}$	$\underline{54.77 {\pm} 1.68}$	$\underline{42.25{\pm}0.27}$	$67.02{\pm}0.73$	$\underline{57.01{\pm}0.40}$
SFT	$85.43 {\pm} 0.13$	$75.43 {\pm} 0.12$	48.21 ± 1.21	41.76 ± 1.34	$76.08{\pm}0.25$	51.71 ± 0.82
SFT^{+k}	$\underline{87.31{\pm}0.15}$	$\underline{76.78 {\pm} 0.38}$	$\underline{51.21{\pm}1.14}$	$\overline{37.96 \pm 0.05}$	$77.75 {\pm} 0.42$	$\underline{59.18{\pm}1.33}$
UNICON	88.43 ± 0.14	$81.37{\pm}0.43$	$57.92{\pm}0.43$	42.70 ± 0.50	$71.45{\pm}0.03$	$33.98 {\pm} 1.03$
UNICON^{+k}	$\underline{89.21{\pm}0.42}$	$\underline{82.27{\pm}0.29}$	$\underline{61.55{\pm}0.13}$	$\underline{48.47{\pm}0.40}$	$\overline{71.04 \pm 0.14}$	$\underline{42.17{\pm}0.31}$
DISC	$91.58{\pm}0.21$	$85.89{\pm}0.16$	$64.97{\pm}0.17$	$49.79{\scriptstyle\pm0.20}$	$74.04{\pm}0.11$	$40.55{\scriptstyle \pm 0.18}$
DISC^{+k}	$\underline{91.88{\scriptstyle\pm0.15}}$	$\underline{\textbf{86.70}{\pm}0.03}$	$65.96{\scriptstyle \pm 0.15}$	50.74 ± 0.11	$\underline{75.38{\pm}0.30}$	$\underline{63.32{\pm}0.49}$

Experiments (Asymmetric Noise) Ioise ratio CIFAR-10 CIFAR-100 Animal-100 Ioise ratio 0.2 0.4 0.2 0.4 Baseline 86.12 ± 0.42 77.18 ± 0.30 62.96 ± 0.12 59.07 ± 0.08 80.32 ± 0.20

	CIFAR	-10	CIFAR-100		Animal-10N	
Noise ratio	0.2	0.4	0.2	0.4		
Baseline	86.12 ± 0.42	77.18±0.30	62.96 ± 0.12	59.07 ± 0.08	80.32 ± 0.20	
DualT GT-T	92.24 ± 0.10 92.51 ± 0.03	66.23 ± 0.03 89.68 ± 0.13	53.61 ± 1.49 73.88 ± 0.04	52.03 ± 1.92 66.61 ± 0.03	81.14±0.28 -	
SOP	$92.85{\pm}0.49$	$89.93{\pm}0.25$	$72.60{\pm}0.70$	$70.58{\pm}0.30$	$83.93{\pm}0.35$	
$\begin{array}{c} \text{CRUST} \\ \text{CRUST}^{+k} \end{array}$	$\frac{91.94{\pm}0.05}{89.47{\pm}0.17}$	$\frac{89.40{\pm}0.03}{84.96{\pm}0.91}$	$\frac{60.75 \pm 1.87}{62.44 \pm 0.84}$	$\frac{59.79 {\pm} 0.89}{61.07 {\pm} 0.16}$	$\frac{81.88{\pm}0.13}{81.74{\pm}0.08}$	
$FINE FINE^{+k}$	$\frac{89.07 \pm 0.03}{90.87 \pm 0.04}$	$\frac{85.51 \pm 0.18}{\underline{89.15 \pm 0.26}}$	$\frac{65.42 \pm 0.11}{73.59 \pm 0.12}$	$\frac{65.11 \pm 0.11}{72.87 \pm 0.11}$	$\frac{81.15 \pm 0.11}{82.27 \pm 0.10}$	
${ m SFT} \ { m SFT}^{+k}$	$\frac{92.67 \pm 0.04}{93.19 \pm 0.08}$	$\frac{89.77 \pm 0.14}{90.55 \pm 0.06}$	$\frac{74.41{\pm}0.05}{74.29{\pm}0.14}$	$\frac{69.51 {\pm} 0.06}{70.94 {\pm} 0.13}$	$\frac{82.24{\pm}0.10}{82.88{\pm}0.18}$	
UNICON UNICON $^{+k}$	$\frac{92.42 \pm 0.04}{92.60 \pm 0.07}$	$\frac{91.51{\pm}0.12}{91.35{\pm}0.24}$	$\frac{75.95 \pm 0.04}{76.87 \pm 0.24}$	$\frac{73.08 \pm 0.07}{73.97 \pm 0.11}$	$\frac{87.76 \pm 0.06}{88.28 \pm 0.29}$	
$\frac{\text{DISC}}{\text{DISC}^{+k}}$	94.82 ± 0.04 95.40 ± 0.08	$93.24{\pm}0.04$ $94.05{\pm}0.07$	76.02 ± 0.15 77.13 ± 0.05	74.36 ± 0.16 75.50 ± 0.08	$\frac{86.44{\pm}0.14}{86.90{\pm}0.10}$	

Class A Class B

 $\begin{array}{c} \textbf{Asym. Noise} \text{ (pairwise)} \\ B \leftrightarrow A \end{array}$

Clothing1M

Baseline 1	DivideMix [;]	* ELR*	CORES ² *	SOP*	UNICON	$UNICON^{+k}$	DISC	DISC^{+k}
						(ours)		(ours)
69.45	74.76	72.87	73.24	73.50	74.56	75.13	73.30	73.87

BOSTON UNIVERSITY

Discussions

Incomplete or Noisy Knowledge

Discussions

Combining noise estimation and noise detection algorithms

	CIFAR-10		CIFAR-100		CHAMMI-CP	Animal-10N
Asym Noise Ratio	0.2	0.4	0.2	0.4		
$ \begin{array}{l} \text{FINE} \\ \text{DualT} & +\text{FINE}^{+k} \\ \text{FINE}^{+k} \end{array} $	89.07 89.89 90.87	85.51 88.87 89.15	65.42 66.36 73.59	65.11 62.80 72.87	67.27 70.70 67.02	81.15 81.84 82.27

Thanks for Watching!

Siqi Wang, Bryan A. Plummer

siqiwang@bu.edu