PromptCCD: Learning Gaussian Mixture Prompt Pool for Continual Category Discovery

visual-ai.github.io/promptccd/

Fernando Julio Cendra¹, Bingchen Zhao², Kai Han¹

¹Visual AI Lab, The University of Hong Kong ²The University of Edinburgh

Accepted at ECCV 2024 in Milan, Italy

香港大學 THE UNIVERSITY OF HONG KONG

THE UNIVERSITY of EDINBURGH

Contents

- [Intro.] What is Continual Category Discovery (CCD)?
- [*Related work*] Current state of CCD solutions.
- [*PromptCCD*] Our proposed solution.
- [Analysis] Experiment on CCD benchmarks & model analysis.
- Conclusion

[Intro.] Our visual world is open and dynamic

2

Timestep

CNN CNN

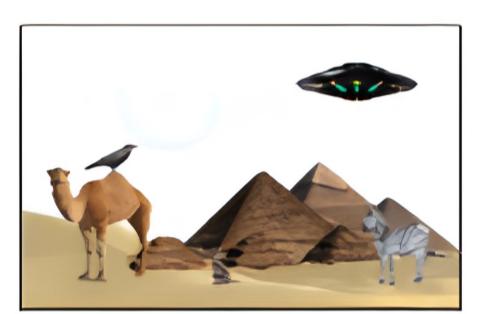
A legless lizard and hundreds of other new species were discovered in 2023

Hundreds of species were newly discovered in 2023, including a spiny-throated reed frog named Hyperolius ukaguruensis. Found in Tanzania's... 29 Dec 2023

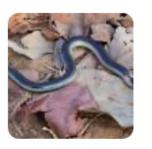
CNN CNN

Scientists discover 100 potential new deep-sea species, including mystery creature

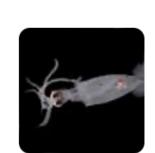
Scientists reported they found about 100 potential new deep-sea species — including one mystery creature - during an expedition off the ... 12 Mar 2024



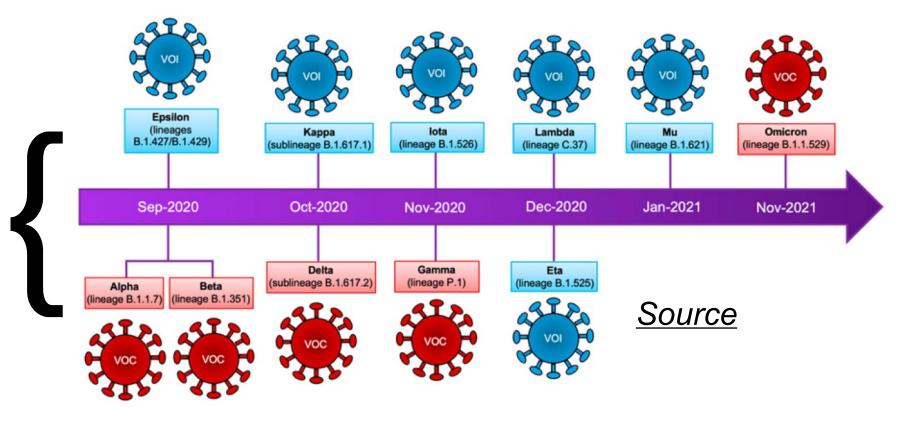
Intelligent perception systems should be **dynamic** and **open** (able to handle OOD) samples). Additionally, they need to be **parameter efficient** to ensure easy adaptability.



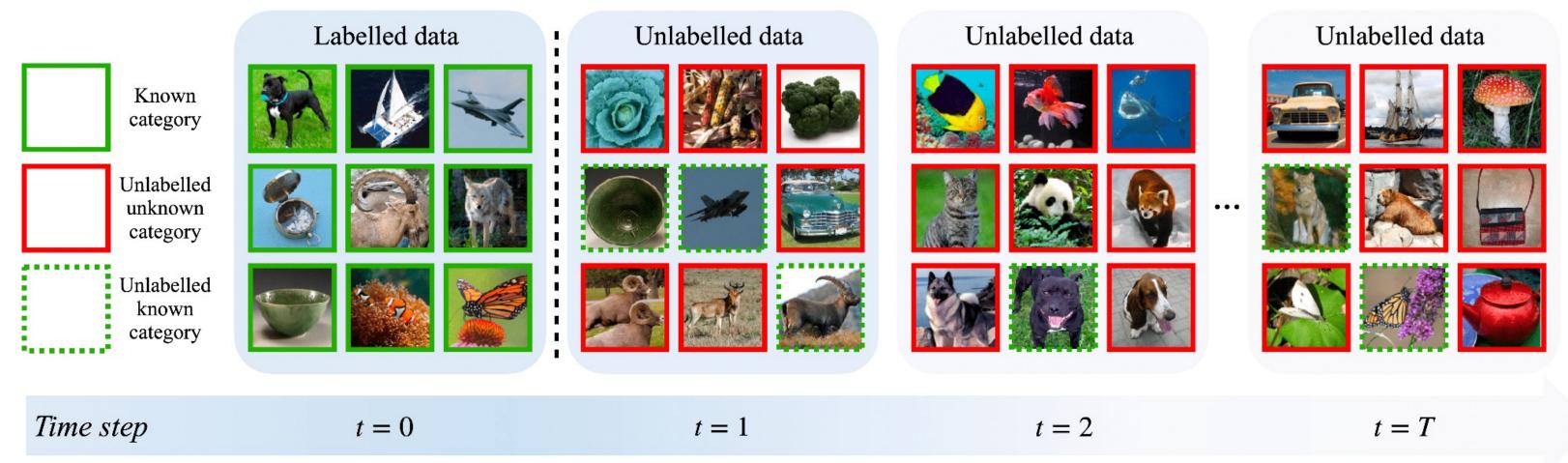
Newly discovered species



The emergence of **COVID** variants

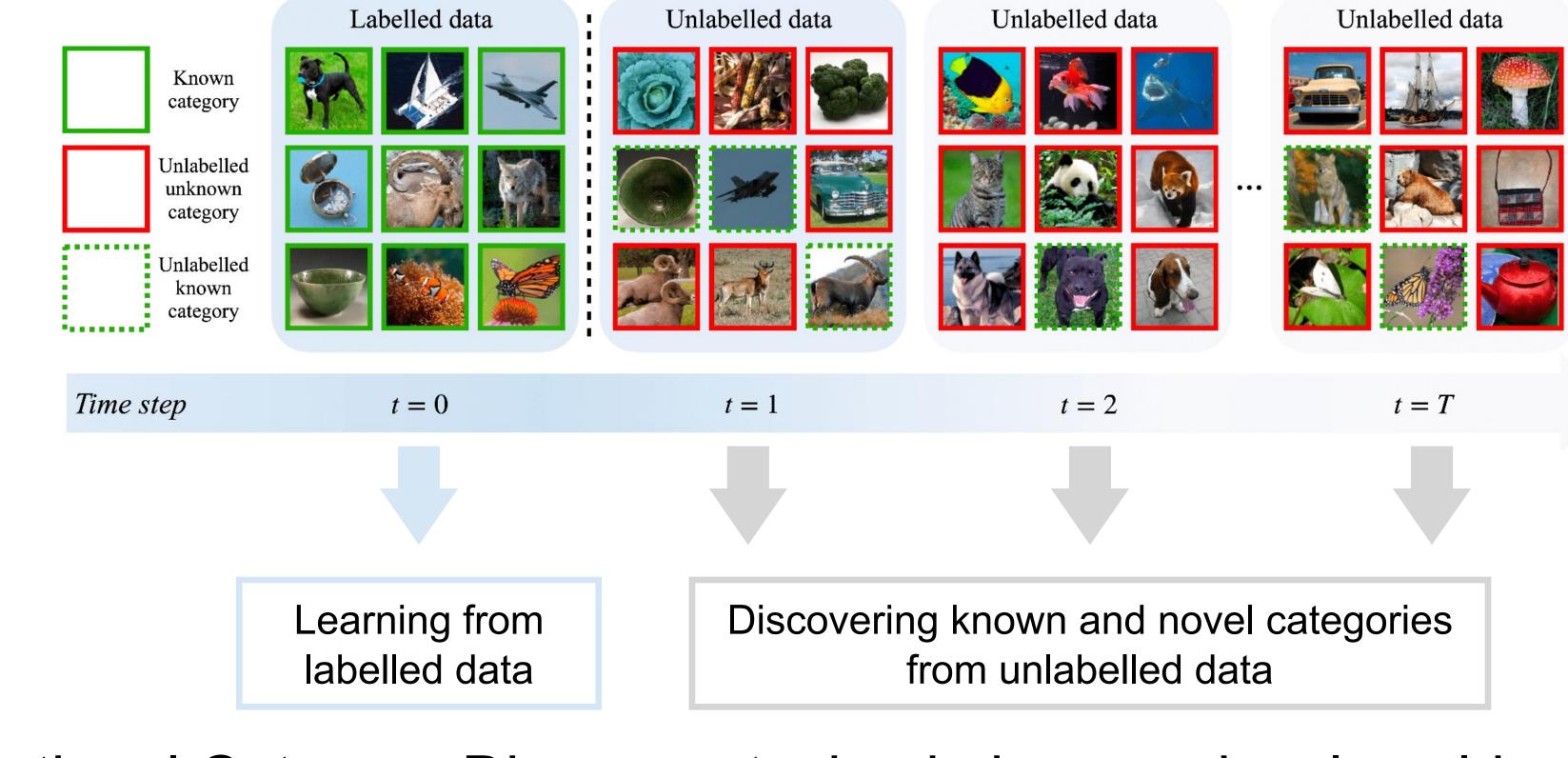


Continual Category Discovery



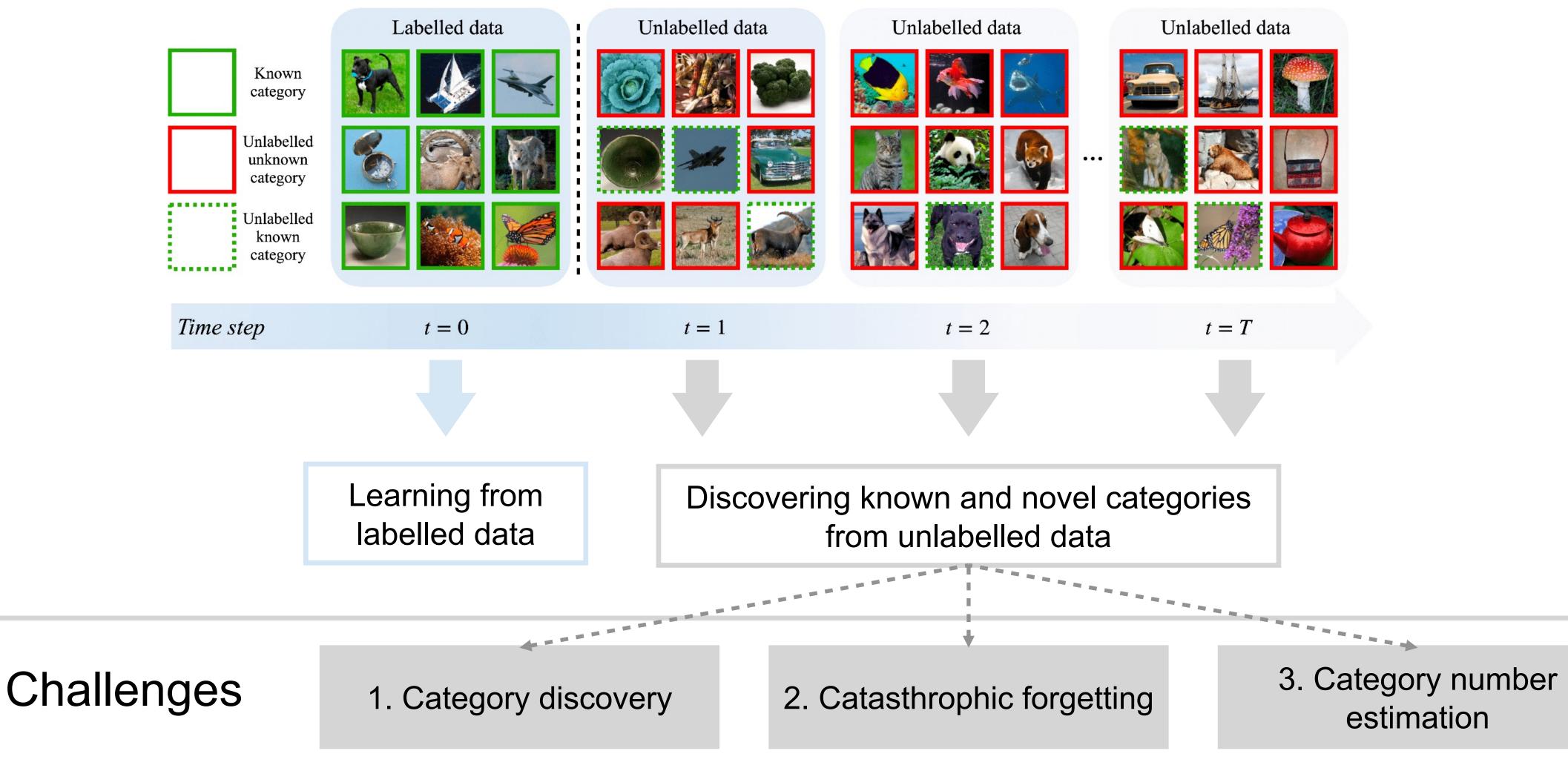
Continual Category Discovery task mimics our visual world where...

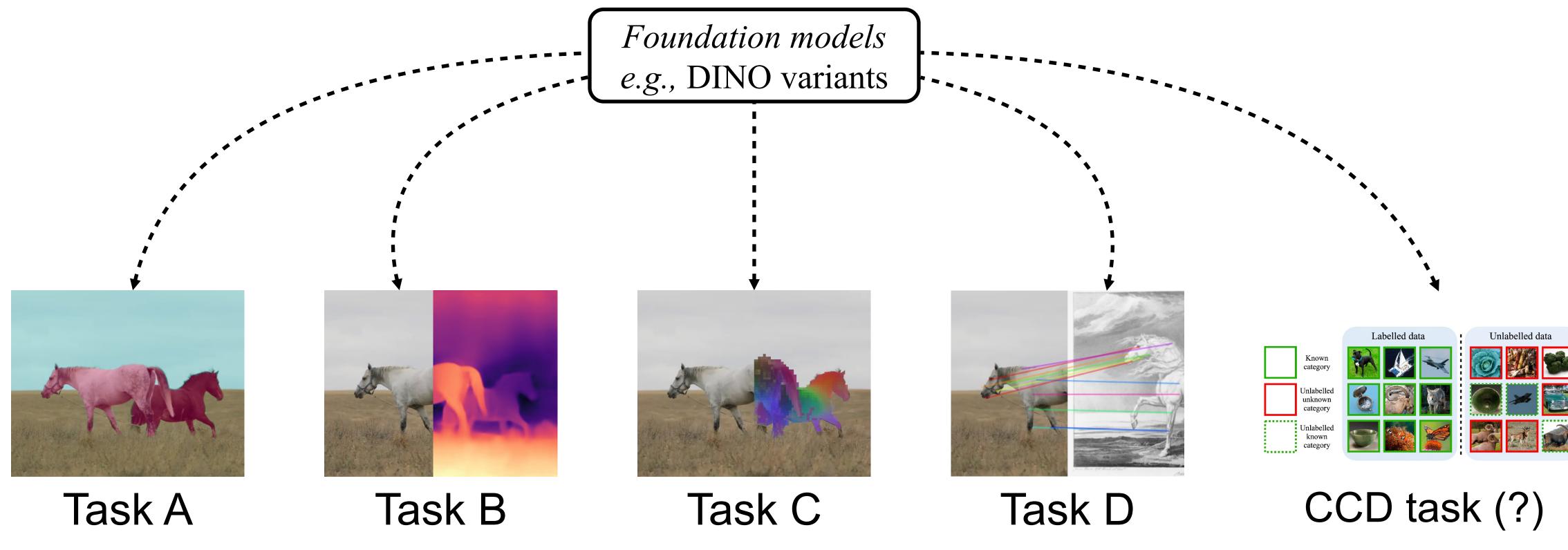
Continual Category Discovery



Continual Category Discovery task mimics our visual world where...

Continual Category Discovery





Some images are taken from https://dinov2.metademolab.com/

Recently, vision foundation models have shown remarkable performance on multiple tasks. Thus, we aim to unleash the potential of such models for CCD.

Preliminary results by directly using DINO model for CCD task

Foundation models e.g., DINO variants

Method

Frozen DINO

Method

Frozen DINO

Continual Category Discovery

	Labelled data	÷	Unlabelled data	Unlabelled data		Unlabelled data
Known category	👬 🐼 📉		6	🔝 🜦 🍝		in 1997 -
Unlabelled unknown category	6		O >> S		••	
Unlabelled known category						
Time step	t = 0		<i>t</i> = 1	t = 2		t = T

CCD results using frozen DINO

	CI	FAR1	00	ImageNet-100							
	All	Old	New	All	Old	New					
)	56.45	68.10	53.21	67.25	73.25	65.44					
	Tiny	/Image	eNet		CUB						
	Tiny All	vImage Old	eNet New	All	CUB Old	New					

*Experiment details will be explained later

Is there any potential method to further enhance foundation model for CCD?

Foundation models e.g., DINO variants

Continual Category Discovery

	Labelled data	Ŧ	Unlabelled data	Unlabelled data		Unlabelled data
Known category	👬 🌽 📉		6 14	🔝 🜦 栏		
➡ Unlabelled unknown category	6				•	
Unlabelled known category						
Time step	t = 0		t = 1	t = 2		t = T

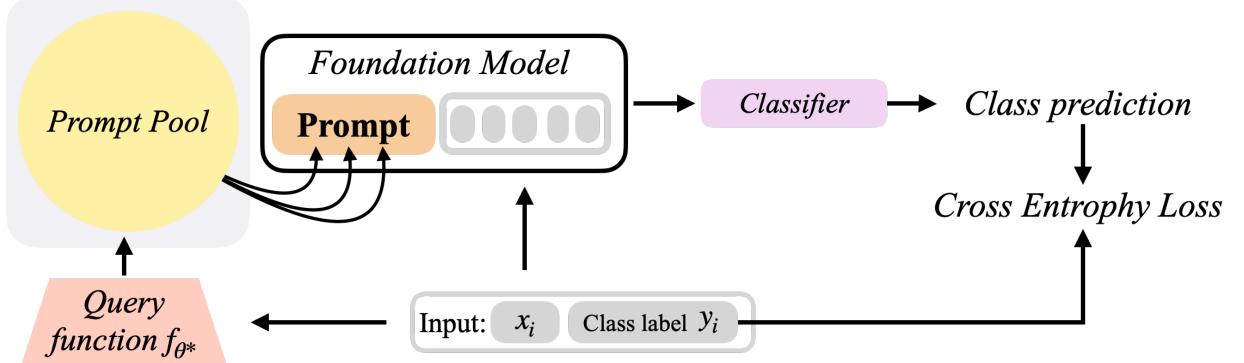
Before presenting our proposed method, let's review some of the works that inspired it.

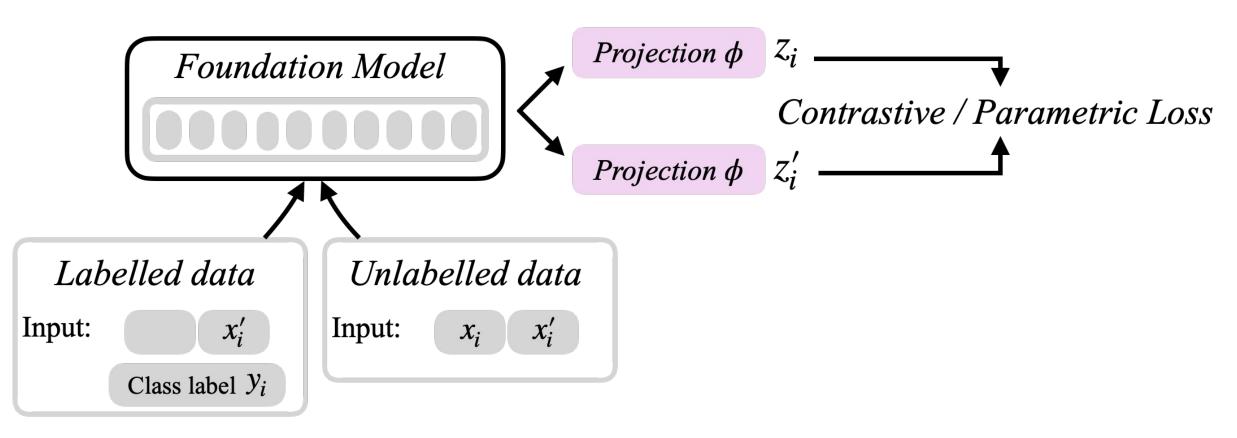
[Intro.] Motivation - background

Generalized Category Discovery (GCD)

In GCD, given a dataset, a subset of which has class labels, the model is tasked to categorize all unlabelled images.

Prompt-based Supervised Continual Learning





- The model leverages a prompt pool (e.g., L2P, Dual Prompt) to guide a foundation model in supervised continual learning.
 - It extracts feature queries to retrieve top-k relevant ulletprompts from the pool, which, along with class labels, are used to supervised the model.

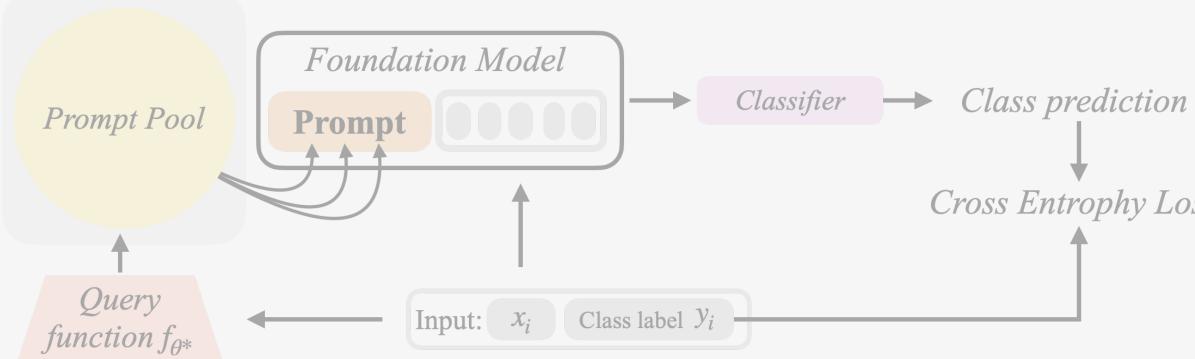
[Intro.] Motivation - background

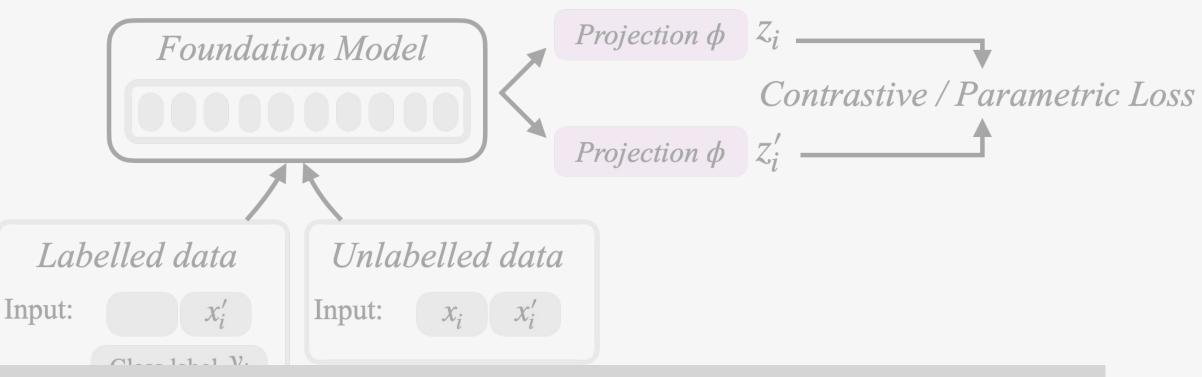
Generalized Category Discovery (GCD)

• In GCD, given a dataset, a subset of which has class labels, the model is tasked to categorize all unlabelled images.

Neither method is effective in CCD because only unlabelled data is available during the discovery stage. Furthermore, the unlabelled data may contain categories not present in the initial labelled set.

Prompt-based Supervised Continual Learning



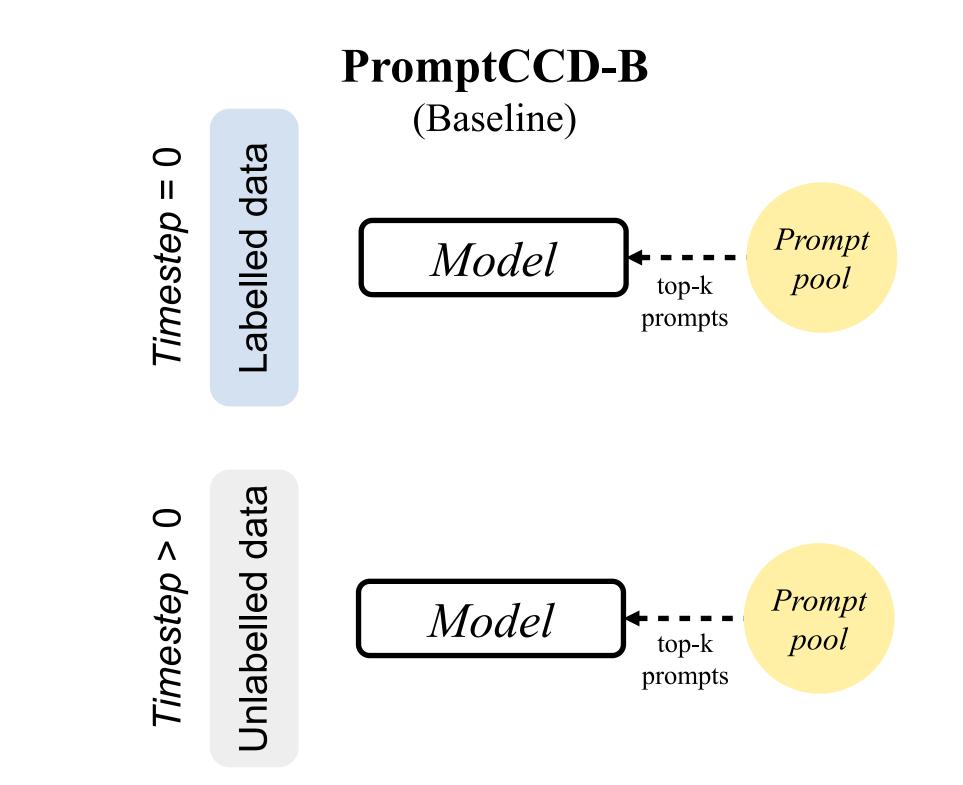


• The model leverages a prompt pool (e.g., L2P, Dual Prompt) to guide a foundation model in supervised continual learning.

Cross Entrophy Loss

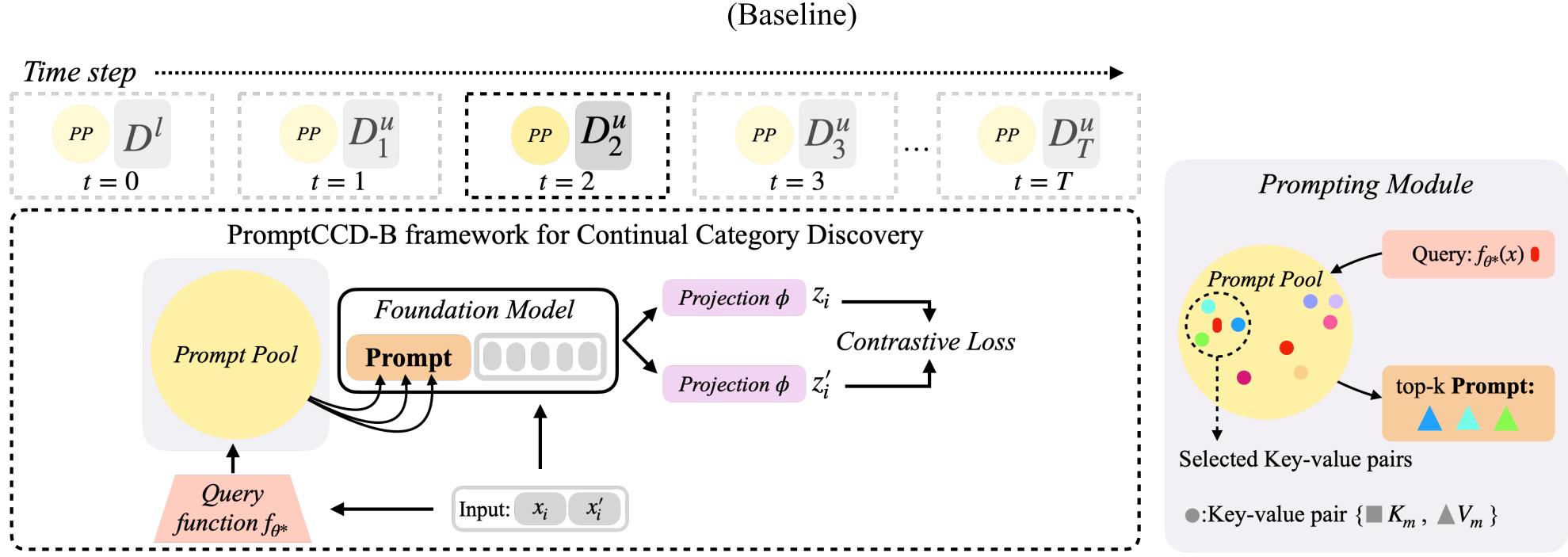
• It extracts feature queries to retrieve top-k relevant prompts from the pool, which, along with class labels, are used to supervised the model.

foundation model with prompt pool modules, e.g., L2P & DP for CCD task:



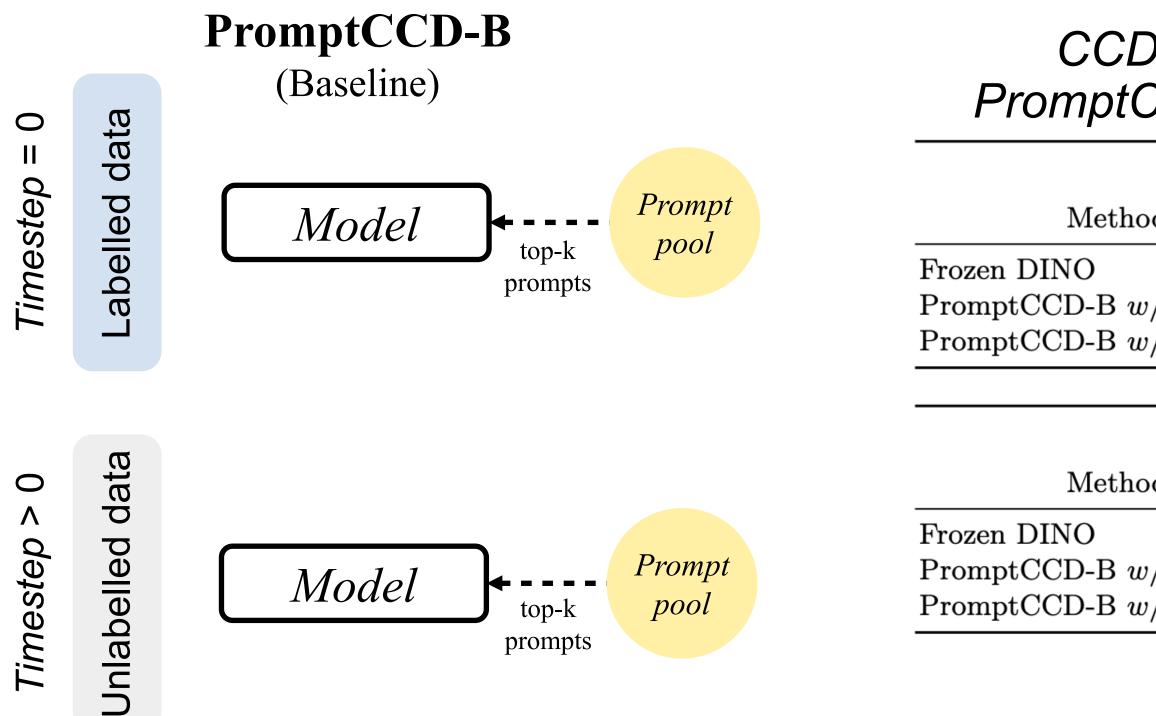
Therefore, we propose a baseline model for CCD, named, PromptCCD-B (baseline) to adapt vision

Therefore, we propose a baseline model for CCD, named, PromptCCD-B (baseline) to adapt vision foundation model with prompt pool modules, e.g., L2P & DP for CCD task:



PromptCCD-B

modules, e.g., L2P & DP for CCD task:



Preliminary results of PromptCCD-B (baseline) by repurposing DINO model with recent prompt pool

CCD comparison results between frozen DINO & the PromptCCD-B with different variants of prompt pool designs.

		CIFAR100		Ι	mageNet-100)
od	All	Old	New	All	Old	New
	56.45	68.10	53.21	67.25	73.25	65.44
w/L2P (Ours)	51.59 ± 6.3	67.27 ± 8.7	$\textbf{46.14} \pm \textbf{6.1}$	66.14 ± 2.3	81.05 ± 1.5	61.36 ± 3.2
w/DP (Ours)	$\textbf{59.60} \pm 1.2$	$\textbf{78.93} \pm 1.3$	54.14 ± 1.6	$\textbf{70.64} \pm 1.3$	83.46 ± 0.4	67.24 ± 1.8
	Т	inyImageNet	t		CUB	
od	T	'inyImageNet Old	t New	All	CUB Old	New
od				All 39.21		New 30.86
od w/L2P (Ours)	All 49.25	<i>Old</i> 59.21	New 45.94	39.21	<i>Old</i> 68.29	30.86

Limitation of current baseline

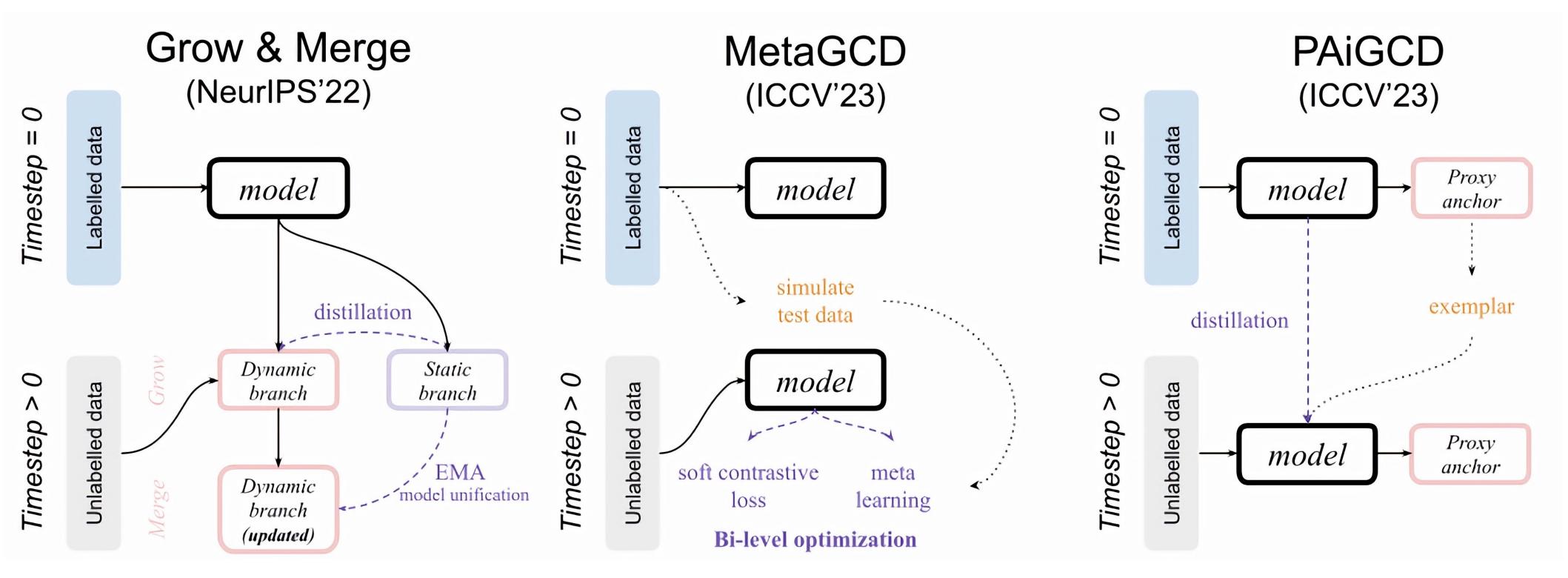
- Lack of explicit guidance (labels) may introduce bias when discovering categories from the continuous unlabelled data stream.
- *Fixed-size prompt pool limits scalability.* The ablation study shows that changing the number of pool size does not significantly impact the CCD performance, even when the size matches the total classes in the dataset.
- There is *no mechanism to dynamically estimate the number of categories*, which is a crucial and underexplored challenge in CCD task.

Ablation study on the prompt pool size using CUB datasets

		w/ L2	Р	1	w/ DF)
Pool Size	All	Old	New	All	Old	New
5	48.69	70.12	41.51	55.54	77.78	48.21
10	50.57	73.22	43.28	55.21	77.24	48.04
20	49.32	70.60	42.29	55.41	76.31	48.18
40	48.59	69.26	41.43	53.97	77.38	46.26
100	51.84	73.09	44.39	55.12	77.26	47.82
200	49.40	71.79	41.94	54.54	79.05	46.29

Goal: To propose a *parameter efficient prompt pool* module specifically designed for adapting foundation models to address Continual Category Discovery.

[Related work] Current CCD solutions



Key idea:

Introduce dynamic and static branches where dynamic branch is used to learn unlabelled data incrementally (**growing phase**) while static branch is used to maintain prev. Knowledge by distillation and model unification (**merging phase**).

Key idea:

Introduce a meta-learning framework and leveraged offline labelled data to simulate testing incremental learninig process. Moreover, a soft contrastive neighbourhood loss is introduced to learn better feature representations.

Key idea:

Introduce a framework which makes use of proxy anchors module to retain knowledge from labelled data and generates high quality examplars from it.

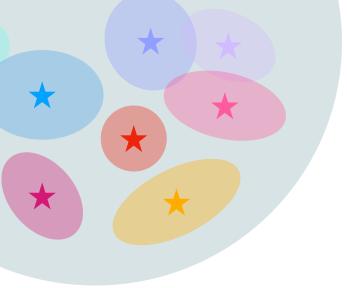
[PromptCCD] Our solution

What solution did we come up with?

[PromptCCD] Our solution

Gaussian Mixture Prompt Pool

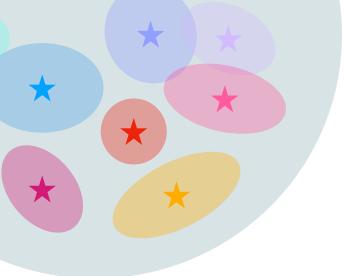
Our simple solution: Gaussian Mixture Prompting Module (GMP)



[PromptCCD] Our solution

Our simple solution: Gaussian Mixture Prompting Module (GMP)

Gaussian Mixture Prompt Pool



Our GMP learns a parameter-efficient, learnable GMM as a pool of prompts, leading to a new framework, called **PromptCCD**.

[PromptCCD] Our solution

GMP vs other prompt pools

 Unlike other prompt pools, GMP's prompt serves dual roles, i.e., (1) prompt to Instruct and (2) prompt as a class prototype (explicit guidance, which does not exist on other prompt pool designs).

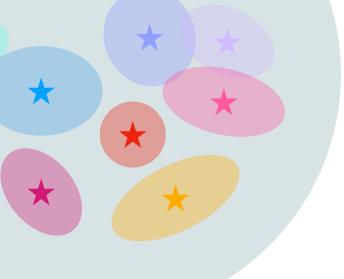
GMP module **generates samples** to preserved the learned class prototypes for next incremental stage.

GMP module enables **on-the-fly** category number estimation during discovery.

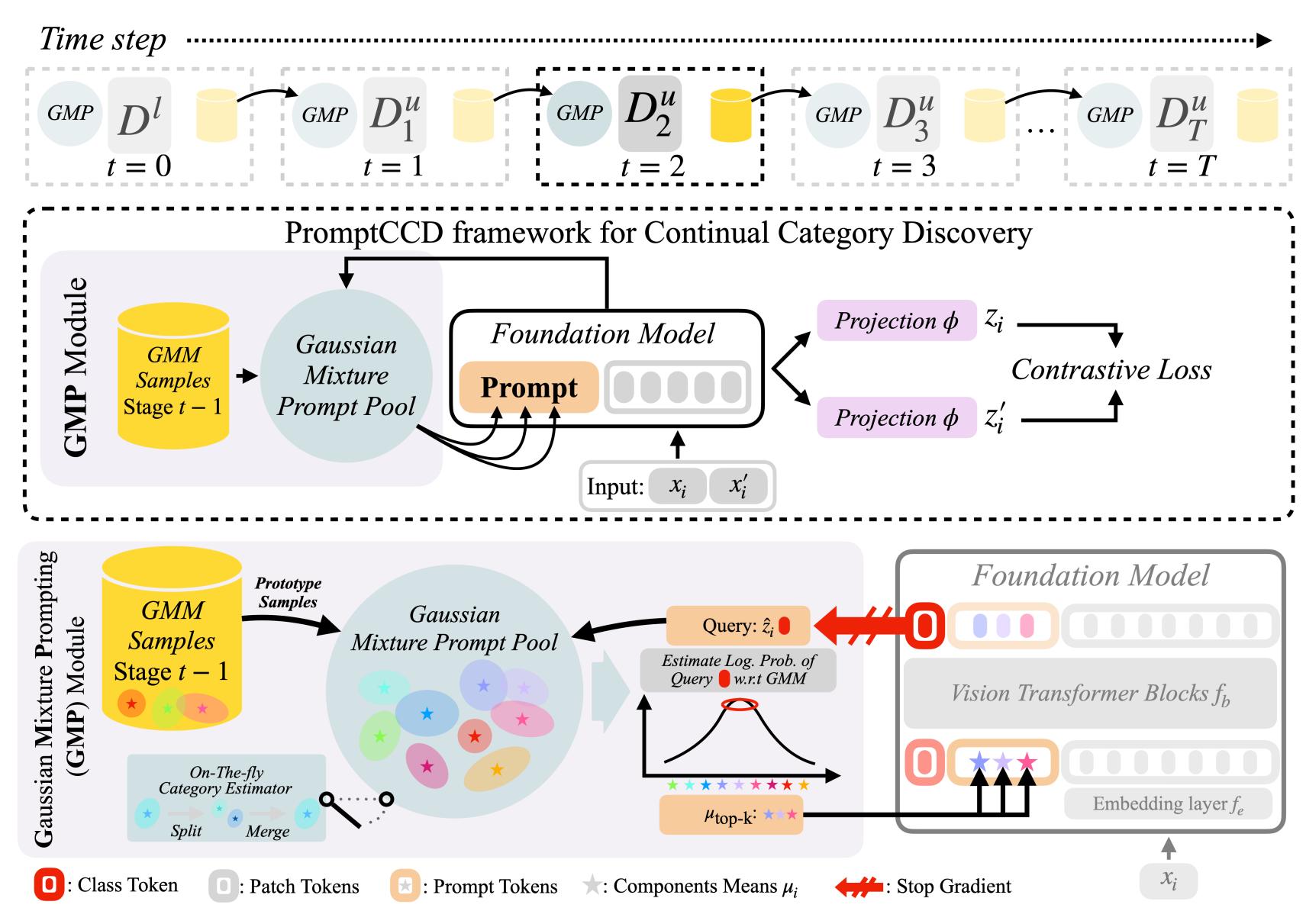
[PromptCCD] Our solution

Gaussian Mixture Prompt Pool

How can we integrated GMP module to our PromptCCD framework?



[PromptCCD] Overall framework



Experiment Details

Stares	C10	0 [28]	IN-1	00 [<mark>43</mark>]	Tin	у [<mark>30</mark>]	C-10)1 [<mark>12</mark>]	Aircr	aft [<mark>35</mark>]	SCa	rs [<mark>27</mark>]	CUI	3 [<mark>48</mark>]
Stages	C	#	C	#	C	#	C	#	C	#	C	#	C	#
Stage 0 (D^l)	70	30.45K	70	77.46K	140	60.90K	71	4.70K	70	1.98K	130	4.62K	140	3.65K
Stage 1 (D_1^u)	80	5.95K	80	15.14K	160	11.90K	81	0.73K	80	0.37K	152	0.98K	160	0.71K
Stage 2 (D_2^u)	90	6.55K	90	16.66K	180	13.10K	91	0.65K	90	0.43K	174	1.13K	180	0.79K
Stage 3 (D_3^u)	100	7.05K	100	17.94K	200	14.10K	101	1.12K	100	0.55K	196	1.38K	200	0.85K

CCD datasets & splits

- Above table shows the statistics of the CCD benchmarks datasets.
- While the table on right side shows how we split the classes for each stages.

	Class splits	D^l	D_1^u	D_2^u	D_3^u
e	$\{y_i \mid y_i \le 0.7 * \mathcal{Y} \}$	87%	7%	3%	3%
	$\{y_i \mid 0.7 * \mathcal{Y} < y_i \le 0.8 * \mathcal{Y} \}$	0%	70%	20%	10%
OW	$\{y_i \mid 0.8 * \mathcal{Y} < y_i \le 0.9 * \mathcal{Y} \}$	0%	0%	90%	10%
	$\{y_i \mid 0.9 * \mathcal{Y} < y_i \le \mathcal{Y} \}$	0%	0%	0%	100%

Continual Accuracy (cACC) metric

- algorithm (SS-k-means).
- known and novel categories.

Input: Models $\{f_{\theta}^t \mid t = 1, \dots, T\}$ and datasets $\{D^l, D^u\}$. **Output:** *cACC* value. **Require:** SS-*k*-MEANS(Model, Labelled set, Unlabelled set). **Require:** Initialize set $\mathbb{A}^L \leftarrow D^l$. 1: for $t \in \{1, \dots, T\}$ do 2: $ACC_t, D_t^{u^*} \leftarrow SS-k\text{-MEANS}(f_{\theta}^t, \mathbb{A}^L, D_t^u)$

- 4: $ACCs \leftarrow \{ACC_t \mid t = 1, \dots, T\}$
- 5: $cACC \leftarrow AVERAGE(ACCs)$
- 6: return cACC

• To evaluate the perfomance on CCD task, we make use of semi-supervised K-means

• SS-k-means uses labelled data from both the initial stage and the unlabelled data with assigned labels from the previous stage to assist the clustering algorithm in identifying both

High quality label assignments facilitate the subsequent category discovery while low quality label assignments accumulate errors for the sebsequent category discovery.

Algorithm 1 Continual ACC (cACC) evaluation metric

3: $\mathbb{A}^L \leftarrow \mathbb{A}^L \cup D_t^{u^*}$ // append $D_t^{u^*}$ (w/ assigned labels) to \mathbb{A}^L

[Analysis] PromptCCD variants

Variants of PromptCCD

- Comparison with PromptCCD variants and frozen DINO: This table further highlights the need to adapt foundation models for CCD.
- **Performance:** Our PromptCCD w/GMP consistently outperforms other models.

CCD results comparison between fronzen DINO, PromptCCD-B, and our proposed PromptCCD w/ GMP.

Method

Frozen DINO PromptCCD-B w/IPromptCCD-B w/IPromptCCD w/GM

Method

Frozen DINO PromptCCD-B w/LPromptCCD-B w/LPromptCCD w/GM

		CIFAR100		I	mageNet-100)
1	All	Old	New	All	Old	Ne
	56.45	68.10	53.21	67.25	73.25	65.4
L2P (Ours)	51.59 ± 6.3	67.27 ± 8.7	46.14 ± 6.1	66.14 ± 2.3	81.05 ± 1.5	61.36
DP (Ours)	59.60 ± 1.2	$\textbf{78.93} \pm 1.3$	54.14 ± 1.6	$\textbf{70.64} \pm 1.3$	$\textbf{83.46}\pm0.4$	67.24
MP (Ours)	$\textbf{63.97} \pm 1.4$	$\textbf{76.67} \pm 2.6$	$\textbf{60.01} \pm 1.7$	$\textbf{75.38} \pm 0.7$	81.16 ± 0.7	73.71

	Т	'inyImageNe	t		CUB	
l	All	Old	New	All	Old	Ne
	49.25	59.21	45.94	39.21	68.29	30.8
L2P (Ours)	$\textbf{56.66} \pm 0.4$	66.05 ± 0.8	$\textbf{53.69}\pm0.4$	51.31 ± 1.0	72.43 ± 1.0	44.27
DP (Ours)	58.61 ± 1.5	66.61 ± 0.6	$\textbf{55.84} \pm 1.7$	56.30 ± 1.1	$\textbf{78.64} \pm 1.7$	48.91
MP (Ours)	61.15 ± 1.0	66.29 ± 2.0	$\textbf{58.83} \pm 1.0$	56.65 ± 1.0	79.88 ± 2.5	48.96

[Analysis] CCD benchmarks

Method

CCD benchmark results

- Comparison with other representative CCD and GCD methods for CCD task.
- Experiment on different datasets (generic & finegrained) and foundation (pretrained) models.
- Evaluate using *cACC* metric.
- Overall, our PromptCCD w/GMP outperforms other approaches across all datasets.

ORCA GCD SimGCD GCD w/replay SimGCD w/replay

Grow & Merge MetaGCD PA-CGCD PromptCCD w/GMP (O

GCD MetaGCD PA-CGCD PromptCCD w/GMP (O

Method

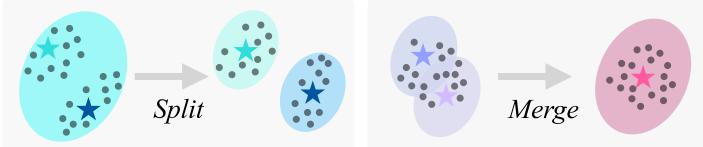
ORCA GCD SimGCD GCD w/replay SimGCD w/replay Grow & Merge MetaGCD PA-CGCD PromptCCD w/GMP (Or GCD MetaGCD PA-CGCD PA-CGCD PromptCCD w/GMP (Or

		С	IFAR1	00	Ima	ageNet	-100	Tin	yImag	eNet	Ca	ltech-1	101
	Pretrained Model	All	Old	New	All	Old	New	All	Old	New	All	Old	Neu
	DINO	60.91	66.61	58.33	40.29	45.85	35.40	54.71	63.13	51.93	76.77	82.80	73.20
	DINO	58.18	72.27	52.83	69.41	81.56	65.65	55.20	65.87	51.61	78.27	86.60	72.92
	DINO	25.56	38.76	20.43	31.38	40.47	27.44	33.40	29.11	34.74	33.65	37.53	31.62
	DINO	49.93	73.15	41.47	72.04	83.75	69.01	56.33	67.54	52.60	76.51	86.14	72.48
	DINO	40.13	66.72	30.91	47.53	67.86	39.18	37.45	58.15	30.36	49.38	52.72	47.99
	DINO	57.43	63.68	55.31	67.84	75.10	66.60	52.14	59.68	49.96	75.75	83.66	71.59
	DINO	55.49	69.38	48.98	66.41	80.54	60.65	55.26	66.12	50.79	80.75	89.02	75.86
	DINO	58.25	87.11	49.04	64.79	91.15	57.83	51.13	74.95	43.52	77.96	94.75	69.66
Ours)	DINO	64.17	75.57	60.34	76.16	81.76	74.35	61.84	66.54	60.26	82.44	89.08	79.72
	DINOv2	65.35	77.06	60.46	71.58	83.02	68.05	59.05	77.44	53.41	83.00	88.65	79.80
	DINOv2	52.10	79.64	43.13	70.20	82.62	64.66	56.15	74.69	49.37	83.05	88.08	80.89
	DINOv2	54.36	79.19	45.65	74.82	88.20	72.02	52.10	68.07	46.32	83.06	94.07	77.55
Ours)	DINOv2	69.73	78.01	66.16	76.28	82.61	74.53	68.20	75.56	65.23	83.86	87.93	81.42
			Aircraf	ft	Sta	nford	Cars		CUB		Av	g. res	ults
	Pretrained Model	All	Old	New	All	Old	New	All	Old	New	All	Old	Neu
	DINO	30.77	25.71	32.44	20.79	33.40	17.60	41.73	66.19	34.14	46.57	54.81	43.29
	DINO	47.37	61.43	42.53	39.21	58.29	33.45	54.98	75.47	48.15	57.52	71.64	52.45
	DINO	29.03	35.72	25.61	21.01	40.93	16.48	39.89	59.25	33.75	30.56	40.25	27.15
	DINO	45.63	62.38	39.89	39.87	58.18	33.89	54.66	74.64	47.81	56.42	72.25	51.02
	DINO	37.44	61.43	28.96	22.76	49.04	16.65	42.08	72.65	31.92	39.54	61.22	32.28
	DINO	31.06	33.33	30.78	21.90	35.29	18.17	38.87	65.00	30.29	49.28	59.39	46.10
	DINO	44.63	59.05	39.39	35.98	56.97	29.96	44.59	74.40	35.40	54.73	70.78	48.72
	DINO	48.24	73.09	40.60	43.88	80.43	33.54	52.48	77.26	44.74	56.68	82.68	48.42
Ours)	DINO	52.64	60.48	50.23	44.07	66.36	36.83	55.45	75.48	48.56	62.40	73.61	58.62
	DINOv2	57.87	63.80	55.39	58.52	71.65	53.80	66.70	83.33	60.81	66.01	77.85	61.67
	DINOv2	54.90	64.29	52.08	57.16	71.87	52.01	62.19	82.50	55.13	62.25	77.67	56.75
	DINOv2	58.15	77.62	51.08	64.91	89.64	57.84	66.88	92.62	58.48	64.90	84.20	58.42
Ours)	DINOv2	62.71	68.33	60.82	65.08	76.60	60.75	67.81	81.55	62.81	70.52	78.66	67.39

[Analysis] CCD benchmarks CCD benchmark results (when category number is unknown)

	Est. method	C	IFAR1	00	Ima	ageNet	-100	Tin	yImage	eNet		CUB	
Category discovery at st	age→	1	2	3	1	2	3	1	2	3	1	2	3
Estimated category C	GPC	85	100	115	83	98	113	155	170	185	161	180	198
Ground truth category C	—	<u>80</u>	<u>90</u>	<u>100</u>	<u>80</u>	<u>90</u>	<u>100</u>	<u>160</u>	<u>180</u>	<u>200</u>	<u>160</u>	<u>180</u>	<u>200</u>
Methods		All	Old	New	All	Old	New	All	Old	New	All	Old	New
GCD	GPC	53.78	74.05	46.37	68.55	82.05	63.96	55.28	65.04	52.15	50.69	72.43	43.16
Grow & Merge	GPC	53.33	66.64	49.61	66.40	74.52	64.01	52.40	57.87	51.00	38.12	62.21	30.00
MetaGCD	GPC	47.55	70.79	38.57	63.48	80.82	56.28	56.21	68.33	50.99	44.30	70.69	35.83
PA-CGCD	GPC	55.66	90.21	44.99	66.74	91.28	58.97	50.55	72.44	43.38	52.27	76.38	44.24
PromptCCD-U w /GMP (Ours) GPC	59.12	77.62	53.70	70.12	81.84	66.12	57.76	64.57	55.37	55.20	73.19	48.82

on-the-fly.



- cluster's compactness and separability using MCMC algorithm.
- estimated category number from our model.

Considering the continual nature of CCD, it would be better to estimate category number

As our GMP module is based on Gaussian Mixture Model (GMM), we incorporate the GMMbased category number estimation method in our framework. Specifically, the idea is to automatically **splitting** and **merging** the GMM's clusters during learning by assessing the

For the sake comparison, we also compare our method with others by directly using the

[Analysis] PromptCCD model analysis

	CI	FAR100 Avg	g. ACC	Imag	geNet-100 A	vg. ACC	top-k	GMM	C100	Avg. ACC	CUB	Avg.
PromptCCD	All	Old	New	All	Old	New	Prompts	Samples	All	Old New	All	Old
w/o GMP	58.18	72.27	52.83	69.41	81.56	65.65	0	0	58.18	$72.27\ 52.83$	54.98	75.47
GMP (random-k) GMP (top-k) (Ours)		73.81 ^{+1.54} 75.57 ^{+3.30}			00.00		5	0		74.68 57.55	53.54	
	Tiny	ImageNet A	wg. ACC		CUB Avg. 4	ACC	5	20	-	75.71 57.90		74.88
PromptCCD	All	Old	New	All	Old	New	5	200	61.00	72.46 57.08	51.67	73.33
w/o GMP	55.20	65.87	51.61	54.98	75.47	48.15	2	100			53.36	
GMP (random-k)		63.95 ^{-1.92}				$43.90^{-4.25}$	<u>5</u>	$\frac{100}{100}$			55.45	
GMP (top-k) (Ours)	61.84	66.54 ^{+0.67}	60.26 ^{+8.65}	55.45	75.48 ^{+0.01}	48.56 ^{+0.41}	10	100	61.03	$72.91\ 56.97$	52.76	71.67

Model analysis

- Left table: to validate the effectiveness of using top-k prompts. \bullet
- *Middle table:* The choices of number for top-k prompts and GMM samples \bullet
- *Right table:* Improving other CCD methods with our GMP.

Method	Prompt	All	Old	New
G&M G&M	$w/o \ { m GMP} w/{ m GMP}$			
MetaGCD MetaGCD	$w/o \ \mathrm{GMP}$ w/GMP			
PromptCCD PromptCCD	$w/o \ \mathrm{GMP} \ w/\mathrm{GMP}$			

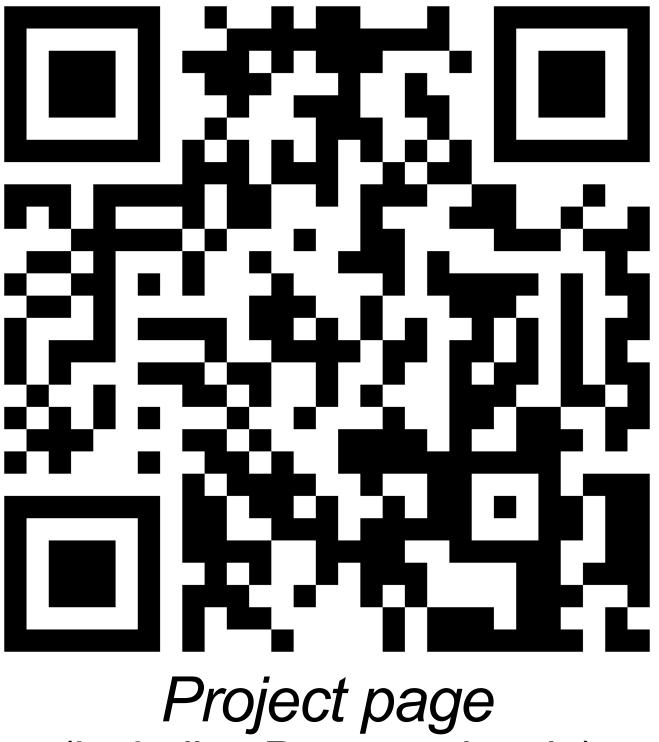
1	1	
	ſ	

Conclusion

- PromptCCD: A novel prompt learning framework for CCD, adapting vision foundation models to address CCD.
- Gaussian Mixture Prompting (GMP): A specialized prompting module for CCD utilizing learnable GMM as a pool of prompts. Additionally, GMP enables on-the-fly category estimation making it well suited for handling CCD task.
- Performance: PromptCCD achieves state of the art results in CCD benchmark.

Q&A

visual-ai.github.io/promptccd/



(Including Paper and code)