

EUROPEAN CONFERENCE ON COMPUTER VISION

Adversarial Robustification via Text-to-Image Diffusion Models

Daewon Choi^{A*} Jongheon Jeong^{B*} Huiwon Jang^A Jinwoo Shin^A

^A Korea Advanced Institute of Science and Technology (KAIST) ^B Korea University ECCV 2024

* Equal contribution

Adversarial Robustness

Definition: Make consistent prediction under every possible perturbation

=

$$f(\mathbf{x}) = f(\mathbf{x} + \boldsymbol{\delta}), \quad \forall \boldsymbol{\delta} : \|\boldsymbol{\delta}\|_2 \leq \varepsilon$$

$$\uparrow$$
Classifier Perturbation

classified as

Stop Sign

Perturbation

+

classified as Max Speed 100

Source: https://www.altacognita.com/robust-attribution (left), GPT-40 (right)

Adversarial Training [Madry et al., 2018]

Adversarial Training : Training via perturbated examples (i.e., adversarial example) (-) Empirical robustness – Only empirically ensure robustness to specific adversarial attack (-) High training cost - Need target dataset for training classifier Attack

[Madry et al., 2018] Towards Deep Learning Models Resistant to Adversarial Attacks. ICML 2018.

Adversarial Training [Madry et al., 2018]

Adversarial Training : Training via perturbated examples (i.e., adversarial example)
 (-) Empirical robustness; Only empirically ensure robustness, not provable
 (-) High training cost; Need target dataset for training classifier

[Madry et al., 2018] Towards Deep Learning Models Resistant to Adversarial Attacks. ICML 2018.

Adversarial Defense for Pre-trained Models

Recent defense methods partially overcome crucial limitations of adversarial training.

(+) Provable robustness(+) Not need to training classifier

(+) Not need target dataset

[Salman et al., 2020] Denoising Smoothing: A Provable Defense for Pretrained Classifiers, NeurIPS 2020. [Carlini et al., 2023] (Certified!!) Adversarial Robustness for Free!, ICLR 2023. [Mao et al., 2023] Understanding Zero-shot Adversarial Robustness for Large-scale Models, ICLR 2023.

Adversarial Defense for Pre-trained Models

However, they still require plenty of training data for robustification.

(-) Need target dataset for separate training denoiser

(-) Still need external dataset for obtaining robustness

[Salman et al., 2020] Denoising Smoothing: A Provable Defense for Pretrained Classifiers, NeurIPS 2020. [Carlini et al., 2023] (Certified!!) Adversarial Robustness for Free!, ICLR 2023. [Mao et al., 2023] Understanding Zero-shot Adversarial Robustness for Large-scale Models, ICLR 2023.

Research Question

However, they require plenty of training data for robustification.

(-) Need target dataset for separate training denoiser (-) Still need external dataset for obtaining robustness

Salman et al., 2020] Denoising Smoothing: A Provable Defense for Pretrained Classifiers, NeurIPS 2020. Carlini et al., 2023] (Certified!!) Adversarial Robustness for Free!, ICLR 2023. Mao et al., 2023] Understanding Zero-shot Adversarial Robustness for Large-scale Models, ICLR 2023.

Research Question

However, they require plenty of training data for robustification.

(-) Need target dataset for separate training denoiser (-) Still need external dataset for obtaining robustness

[Salman et al., 2020] Denoising Smoothing: A Provable Defense for Pretrained Classifiers, NeurIPS 2020. [Carlini et al., 2023] (Certified!!) Adversarial Robustness for Free!, ICLR 2023. [Mao et al., 2023] Understanding Zero-shot Adversarial Robustness for Large-scale Models, ICLR 2023.

Motivation

Can we robustify a classifier without using any external data? **Motivation:** Text to image diffusion models (T2I) is versatile tool for promising solution

Generation

Sprouts in the shape of text 'Imagen' coming out of a A photo of a Shiba Inu dog with a backpack riding a A high contrast portrait of a very happy fuzzy panda bike. It is wearing sunglasses and a beach hat. fairvtale book

dressed as a chef in a high end kitchen making dough. There is a painting of flowers on the wall behind him.

Teddy bears swimming at the Olympics 400m Butter- A cute corgi lives in a house made out of sushi fly event.

A cute sloth holding a small treasure chest. A bright golden glow is coming from the chest.

Personalization

Source: <u>https://imagen.research.google</u> (left), <u>https://dreambooth.github.io</u> (right)

Motivation

Can we robustify a classifier without using any external data? Motivation: Text to image diffusion models (T2I) is versatile tool for promising solution

Goal: Text-to-Image Diffusion Models for Robustification

We utilize text-to-image diffusion models (T2I) mainly in two different ways !

(a) Incorporate T2I into the denoised smoothing pipeline

(b) Personalize T2I on target tasks using few-synthetic data

(a) Incorporate T2I into the Denoised Smoothing Pipeline

Use super-resolution module in pixel-level, cascaded T2I model as a denoiser ✓ The module is biased to reconstruct the original image contents

[Saharia et al., 2022] Photorealistic text-to-image diffusion models with deep language understanding, NeurIPS 2022. DeepFloyd-IF: https://stability.ai/news/deepfloyd-if-text-to-image-model

(b) Personalize T2I on Target Tasks Using Synthetic Data

Step1. Synthesize a few reference samples via T2I, given textual label✓ Given only textual labels for the target task, high-quality images are generated

(b) Personalize T2I on Target Tasks Using Synthetic Data

Step 2&3. By leveraging synthetic samples, fine-tuning both the T2I as well as classifier
✓ DreamBooth enables to personalize T2I with few-reference images

Classifier-guided regularization makes personalization suitable for denoised smoothing

• Dream-Booth Objective [Ruiz et al., 2023]

 $L_{\mathtt{diff}}(\theta) := \mathbb{E}_{x^g,\varepsilon,t} \left[||\varepsilon - \varepsilon_{\theta}(x_t^g, t, \tau_{\theta}(\mathtt{C}(``sks"))|x_t^g, kt)||_2^2 \right]$

Classifier-Guided Regularization

$$L_{\texttt{clf}}(\theta,\psi) := \mathbb{E}_{(x^g,c) \sim D^g,t} \left[\mathbb{CE}(f_{\psi}(\tilde{x}^g),c) \right]$$

[Ruiz et al., 2023] Dream-Booth: Fine tuning text-to-image diffusion models for subject-driven generation, CVPR 2023.

Experiment: Robustification of CLIP

Our framework significantly enhance CLIP with a new robustness-accuracy frontier ✓ Outperforming zero-shot robustness method [Mao et al., 2023] on 8 zero-shot benchmarks

Experiment: Robustification of CLIP

Our framework significantly enhance CLIP with a new robustness-accuracy frontier ✓ Competitive and even surpassing other approaches directly accessing training data

		Robust acc	curacy (%)	Clean accuracy (%)		
Method	Data-free?	$\varepsilon = 0.5$	$\varepsilon = 1.0$	$\varepsilon = 0.5$	$\varepsilon = 1.0$	
CLIP	1	1.4	0.2	58.2	58.2	
CLIP-Smooth	\checkmark	16.8 (9.8)	2.2 (1.2)	45.2 (25.0)	35.2 (3.8)	
Ours (w/o adapt)	\checkmark	40.0(29.6)	31.0(17.6)	56.2(50.8)	55.2 (42.0)	
Ours	\checkmark	42.6 (34.2)	$\underline{31.4}$ (20.6)	57.6 (53.4)	$\underline{56.2}$ (46.0)	
Mao et al. [38]	×	26.0	12.3	51.2	47.2	
Carlini et al. [7]	×	38.6 (30.2)	32.4 (19.8)	54.4 (49.8)	53.6(44.2)	

-> Access training data corresponding test data

[Mao et al., 2023] Understanding Zero-shot Adversarial Robustness for Large-scale Models, ICLR 2023. [Carlini et al., 2023] (Certified!!) Adversarial Robustness for Free!, ICLR 2023.

Experiment: Robustification of Other Classifier

Our framework can also be effective in robustifying other generic vision classifiers ✓ Combining with ResNet-50, surpassing standard approaches accessing training data

		Robust accuracy (%)		Clean accuracy (%)	
Method	Data-free?	$\varepsilon = 0.5$	$\varepsilon = 1.0$	$\varepsilon = 0.5$	$\varepsilon = 1.0$
Standard Training	×	5.2	1.0	74.4	74.4
+ Ours (w/o adapt)	1	56.2(47.0)	44.2(27.4)	$\underline{73.0}$ (67.0)	68.8(57.2)
+ Ours	 Image: A second s	57.0 (50.4)	47.8 (34.0)	70.4 (68.2)	$\underline{71.8}$ (60.8)
Adversarial Training [37]	X	51.0	46.8	55.0	55.0
Randomized Smoothing [13]	×	$55.2 \ (48.6)$	43.8 (37.0)	$65.4 \ (66.8)$	55.4(57.0)
Carlini et al. [7]	X	56.2 (49.2)	45.2(33.2)	72.6(67.4)	70.0(57.8)

-> Access training data corresponding test data

[Madry et al., 2018] Towards Deep Learning Models Resistant to Adversarial Attacks. ICML 2018. [Cohen et al., 2019] Certified adversarial robustness via randomized smoothing. ICML 2019.

Summary

Pursuing adversarial robustness in practice has been viewed as a costly design decision.

• Existing techniques for adversarial robustness require a plenty of training data.

We introduce a new formulation of robustifying vision classifiers without external data.

- Incorporating T2I into the inference of a classifiers in novel ways.
- Applicable for any pre-trained classifiers, even when training data is limited.

Please drop by our poster session for more information

Contact: <u>daeone0920@kaist.ac.kr</u>

