R.A.C.E. : Robust Adversarial Concept Erasure for Secure Text-to-Image Diffusion Model

Changhoon Kim*, Kyle Min* and Yezhou Yang

ECCV 2024 (Oral)

EUROPEAN CONFERENCE ON COMPUTER VISION

4 I L A N O

Motivation

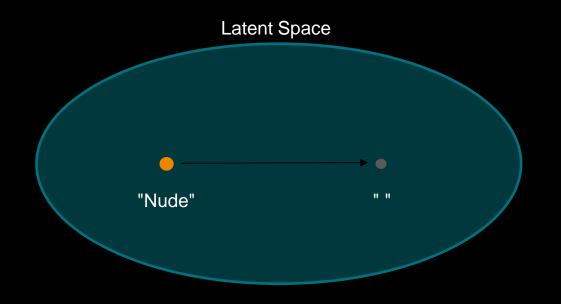
- (Malicious) users can use Generative Model for malicious purposes.
- Fingerprinting can trace these users after the incident (reactive nature)

 \Rightarrow The community is looking for a more **proactive** solution

Is it possible to remove sensitive concepts from Generative AI models?

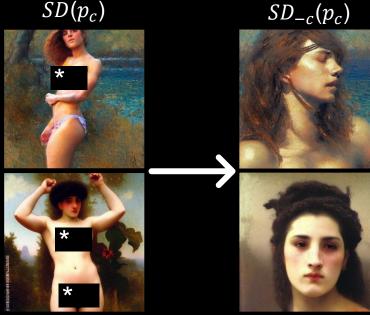
Related Works – Erasing Concept

- Remove sensitive concepts from T2I Models
- Map objectionable concept (e.g., Nude) to Null in latent



Related Works – Erasing Concept

 $SD(p_c)$

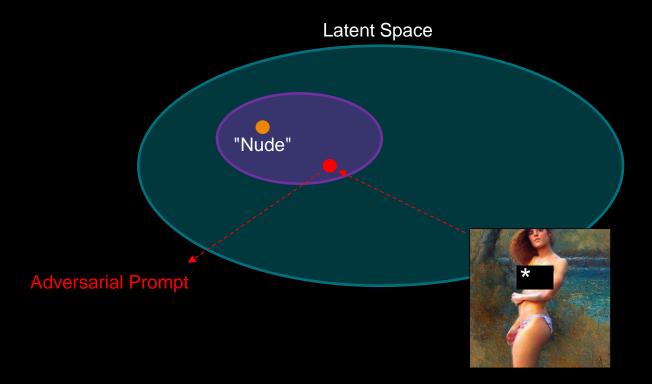


SD: Stable Diffusion lacksquare

- SD_{-c} : SD that erase concept c
- c: Specific concept (e.g. "Nudity")
- p_c : "A painting of lady without clothes"

Related Works – Adversarial Reconstruction

- Reverse engineering to find a prompt that leads to the erased concept



Related Works – Adversarial Reconstruction

 $SD(p_c)$



• c: "Nudity"

• p_c : "A painting of lady without clothes"

• p_c^{adv} : adversarial prompt

\Rightarrow Nude images can be reconstructed by adversarial attempts

Can we use this for adversarial training?

Limitation and Questions

- Extremely Expensive Computational Cost
- This computational cost limits adversarial training

- Can we reduce this computational expense?
- Can a relaxed adversarial attack reconstruct erased concept?
- Can a relaxed adversarial attack be used for adversarial training?

Single-timestep Adversarial Attack

Random sample t ~ [1,1000]

Obj: $argmin_p ||SD_{-c}(p, img_c, t') - n||$

e.g., Generation process, when t' = 800 t = 1000 to 801 follows normal process. t = 800, apply adversarial attack. t = 799 to 0 follows normal process.

Attacked Images@t

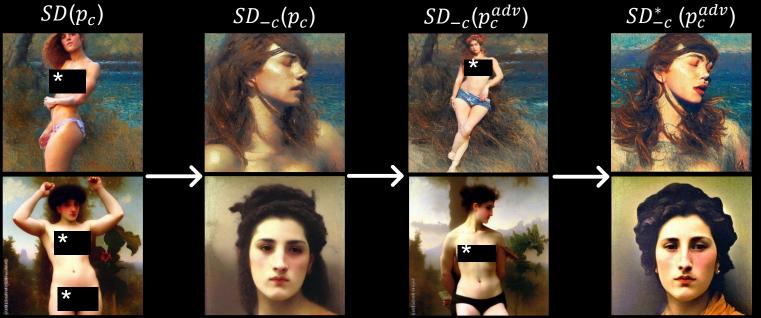
Adversarial Training for SD_{-c}

- Demonstrate that *t* constraint can be relaxed, which enables traditional AT.
- Adversarial Training for SD_{-c}

Algorithm 1 Robust Adversarial Concept Erasure: RACE Algorithm

Input: Diffusion Model Φ_{θ} , frozen diffusion model $\Phi_{\theta*}$, scheduler S, target concept c, training steps M, adversarial steps N, perturbation limit ϵ , attack step size α **for** $i = 0, \dots, M$ **do** Sample noise $n \sim \mathcal{N}(0, 1)$, timestep $t \sim \mathcal{U}(1, 1000)$ Initialize $\delta \sim \mathcal{U}(-\epsilon, \epsilon)$ Denoise $z_t = S(n, t, c)$ **for** $j = 0, \dots, N$ **do** $\delta = \delta + \alpha \cdot sign(\nabla_{\delta} - L_{SD}(\Phi_{\theta}, z_t, t, c, \delta))$ Clamp δ within $[-\epsilon, \epsilon]$ **end for** $\theta = \theta - \nabla_{\theta} L_{RACE}(\Phi_{\theta}, \Phi_{\theta^*}, z_t, t, c, \delta)$ **end for return** Φ_{θ}

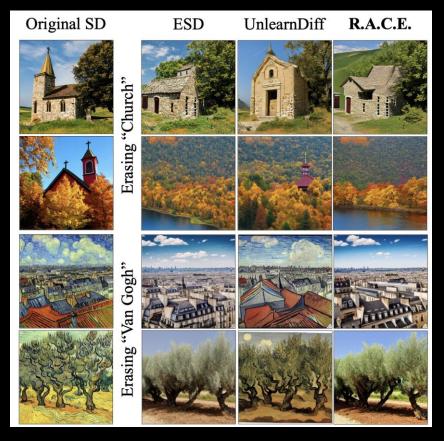
Machine Unlearning in T2I



c: "Nudity"

 p_c : "A painting of lady without clothes" p_c^* : p^* SD_{-c}^* : SD after adversarial training

Other Qualitative Results



Quantitative Results

	Prompts	PEZ [49]	P4D [3]	UnlearnDiff [58]	CLIP-Score [12]	FID [13]
White/Black Box	•	•	0	0	-	-
ESD [9]-VanGogh	0.04	0.00	0.26	0.36	0.7997	19.16
ESD [9]-Nudity	0.14	0.08	0.75	0.80	0.7931	18.88
ESD [9]-Violence	0.27	0.13	0.84	0.79	0.7834	21.55
ESD [9]-Illegal	0.29	0.20	0.89	0.85	0.7854	21.50
ESD [9]-Church	0.16	0.00	0.58	0.68	0.7896	19.68
ESD [9]-GolfBall	0.04	0.00	0.16	0.16	0.7738	20.64
ESD [9]-Parachute	0.06	0.04	0.48	0.60	0.7865	19.72
RACE-VanGogh	0.00 (-0.04)	0.00 (-0.00)	0.00 (-0.26)	0.04 (-0.32)	0.8024	20.65
RACE-Nudity	0.05(-0.09)	0.02(-0.06)	0.49(-0.26)	0.47(-0.33)	0.7452	25.16
RACE-Violence	0.11(-0.16)	0.08(-0.05)	0.75(-0.09)	0.68 (-0.11)	0.7374	28.71
RACE-Illegal	0.20(-0.09)	0.13(-0.07)	0.85(-0.04)	0.80(-0.05)	0.7591	24.87
RACE-Church	0.02(-0.14)	0.00(-0.00)	0.26(-0.32)	0.38 (-0.30)	0.7730	23.92
RACE-GolfBall	0.00(-0.04)	0.00(-0.00)	0.10 (-0.06)	0.06 (-0.10)	0.7480	25.38
RACE-Parachute	0.02 (-0.04)	0.00 (-0.04)	0.24 (-0.24)	0.38 (-0.22)	0.7570	26.42

Conclusion

- Introduced adversarial training to enhance the robustness of concept erasure.
- Developed a method resilient to both white-box and black-box attacks.
- Highlighted the trade-off between increased robustness and image quality.

Thank you!

