

High-Resolution and Few-shot View Synthesis from Asymmetric Dual-lens Inputs

Ruikang Xu · Mingde Yao · Yue Li · Yueyi Zhang · Zhiwei Xiong

University of Science and Technology of China

Asymmetric Dual-lens System for Novel View Synthesis

- 1) Combining the wide-angle and telephoto images forms an asymmetric stereo configuration, which stores the geometric information to facilitate the few-shot training.
- 2) The telephoto images have higher resolution than the wide-angle ones, naturally providing additional HR guidance to improve the resolution of newly synthesized views.

DL-GS: Consistency-aware Training

- Dual-lens-consistent Loss: Enforce the view consistency between the newly synthesized view and the corresponding telephoto image, implicitly exploiting the geometric information of dual-lens system.
- > Depth-wise Loss: Monocular depth as supplementary supervision.

Loss Functions for Consistency-aware Training

DL-GS: Multi-reference-guided Refinement

- Using camera positions relationship (R-T matrices) to select the *Reference* images from training samples and perform information Transfer;
- > HR-LR pairs from telephoto and wide-angle images for *self-supervised training*.

Multi-reference-guided Refinement

 $\mathcal{L}_{DL} = \lambda_1 \|\mathbf{Crop}(\hat{I}^{rec}) - T^{align}\|_2 + \lambda_2 \|\hat{I}^{rec} - I^{\uparrow}\|_2 + \lambda_3 \mathcal{L}_{cx}(\mathbf{Crop}(\hat{I}^{rec}), T)$ Self-training Loss Function

Quantitative comparisons on Simulated Data

Mathad	10-shot				20-shot		90-shot			
Method	PSNR ↑	SSIM \uparrow	LPIPS \downarrow	$\mathrm{PSNR}\uparrow$	\uparrow SSIM \uparrow	LPIPS \downarrow	$\mathrm{PSNR}\uparrow$	SSIM \uparrow	$LPIPS \downarrow$	
3D-GS [19] + Bicubic	17.63	0.4979	0.4411	20.75	0.5905	0.3624	24.03	0.7113	0.2677	
3D-GS [19] + SwinIR [25]	17.84	0.4988	0.4387	20.87	0.5924	0.3613	24.52	0.7192	0.2628	
3D-GS [19] + HAT [9]	17.89	0.4995	0.4402	20.89	0.5931	0.3615	24.57	0.7196	0.2650	
3D-GS [19] + DCSR [51]	17.92	0.5037	0.4314	20.92	0.5964	0.3592	24.60	0.7265	0.2582	
NeRF-SR $[49]$	17.40	0.5032	0.4830	20.84	0.5967	0.3726	24.89	0.7394	0.2422	
DS-NeRF $[13] + HAT [9]$	19.05	0.5546	0.4598	21.54	0.5801	0.4366	22.47	0.6002	0.4395	
$\operatorname{RegNeRF} [33] + \operatorname{HAT} [9]$	18.78	0.5539	0.4573	20.18	0.5613	0.4476	22.34	0.6259	0.4040	
SparseNeRF $[50]$ + HAT $[9]$	19.12	0.5441	0.4482	21.31	0.5724	0.4398	22.49	0.6329	0.4006	
FSGS $[65]$ + HAT $[9]$	19.09	0.5511	0.4321	20.68	0.5897	0.3637	24.42	0.7183	0.2526	
Ours	19.67	0.5772	0.3877	21.77	0.6366	0.3366	25.61	0.7692	0.2076	

- Baselines: 1) vanilla 3D-GS followed with SISR; 2) vanilla 3D-GS followed with dual-lens SR; 3) HR NVS method; 4) few-shot NVS methods followed with HAT.
- DL-GS shows superior performance over the previous methods by leveraging the characteristics of the dual-lens system.

Qualitative comparisons on Simulated Data

DS-NeRF + HAT

SparseNeRF + HAT

FSGS + HAT

Quantitative comparisons on Real-captured Data

	Forward-facing					Inward-facing (360°)						
Method	5-shot		50-shot			15-shot			50-shot			
	$PSNR \uparrow$	\uparrow SSIM \uparrow	LPIPS \downarrow	$\mathrm{PSNR}\uparrow$	SSIM \uparrow	LPIPS ↓	$PSNR\uparrow$	\uparrow SSIM \uparrow	$\mathrm{LPIPS}\downarrow$	$PSNR \uparrow$	SSIM \uparrow	$\text{LPIPS}\downarrow$
3D-GS [19] + Bicubic	20.87	0.7064	0.3690	28.38	0.8467	0.2769	21.00	0.7036	0.4570	29.15	0.8278	0.3625
3D-GS [19] + SwinIR [25]	20.94	0.7088	0.3681	28.46	0.8485	0.2750	21.02	0.7043	0.4479	29.19	0.8280	0.3609
3D-GS [19] + HAT [9]	20.91	0.7086	0.3670	28.52	0.8492	0.2763	21.01	0.7050	0.4477	29.21	0.8283	0.3611
3D-GS [19] + DCSR [51]	21.03	0.7099	0.3636	28.29	0.8421	0.2674	21.00	0.7051	0.4540	29.05	0.8248	0.3646
NeRF-SR $[49]$	12.53	0.5389	0.5606	30.53	0.8687	0.2372	15.80	0.6300	0.5638	29.76	0.8419	0.3479
DS-NeRF $[13]$ + HAT $[9]$	19.18	0.7019	0.4516	27.02	0.7951	0.3594	22.38	0.7307	0.4685	26.81	0.7711	0.4502
RegNeRF $[33]$ + HAT $[9]$	22.39	0.7075	0.3679	24.31	0.7541	0.4160	20.20	0.6958	0.4949	23.55	0.7321	0.4829
SparseNeRF $[50] + HAT [9]$	22.98	0.7127	0.3787	24.57	0.7641	0.4091	20.31	0.7048	0.4767	23.72	0.7497	0.4794
FSGS $[65] + HAT [9]$	23.08	0.7322	0.3595	29.90	0.8319	0.2996	22.96	0.7461	0.4415	27.77	0.8023	0.4038
Ours	24.05	0.7525	0.3249	31.28	0.8823	0.2435	24.07	0.7601	0.4172	30.72	0.8597	0.3224

- We collect a set of dual-lens image pairs, captured from different viewpoints of static scenes by an off-the-shelf smartphone (i.e., iPhone12).
- DL-GS shows superior performance over the previous methods in most cases, which verifies the effectiveness of our method on the real-captured data.

Qualitative comparisons on Real-captured Data

NeRF-SR

DS-NeRF + HAT

SparseNeRF + HAT

15-shot on inward-facing scene.

5-shot on forward-facing scene.

Ours

GT

DS-NeRF + HAT

3D-GS + HAT

SparseNeRF + HAT

3D-GS + DCSR

FSGS + HAT

Ours

Conclusion

New 3D-GS-based solution for HR and few-shot views synthesis by leveraging

the characteristics of the asymmetric dual-lens system.

- Consistency-aware training strategy to exploit the geometric information of dual-lens pairs for regularizing optimization.
- Multi-reference-guided refinement module to enhance newly synthesized views by making the best use of dual-lens training samples.

Effective on simulated and real-captured experiments.