SpaRP: Fast 3D Object Reconstruction and Pose Estimation from Sparse Views

Chao Xu Sep 29, 2024

Single view to 3D

Stable Fast 3D

Rodin Gen-1 v0.8

Tripo v2.0

Single view to 3D is **ill-posed**

Input Image

Stable Fast 3D

Rodin Gen-1 v0.8

Hallucination is **uncontrollable** and may lead to **undesired** results.

Tested on Sep 19, 2024

Sparse views to 3D is more controllable

Our method generates 3D assets closely following the reference unposed images, overcoming the ambiguity inherent in single-view-to-3D.

More generally ...

Given a few (1~6) unposed images, how to understand

their spatial relationship?

SpaRP focuses on two tasks:

- 3D Reconstruction
- Pose Estimation

Pipeline

Pipeline Overview

Pipeline

Unposed Sparse Views

Pipeline

Many compatible **multi-view-to-3D** models: One-2-3-45++, InstantMesh, GRM, MeshLRM, MeshFormer, etc.

3D Recon Comparison

Single Image to 3D (only the first image is used)

More Unposed Views Less Unwanted Surprise

predicted generated poses meshes

Takeaways:

- Diffusion models can implicitly learn from unposed sparse views.
- 2. We can diffuse NOCS, a surrogate representation to predict input poses.
- 3. Pose prediction and 3D reconstruction can complement each other.

