Freeview Sketching View-Aware Fine-Grained Sketch-Based Image Retrieval

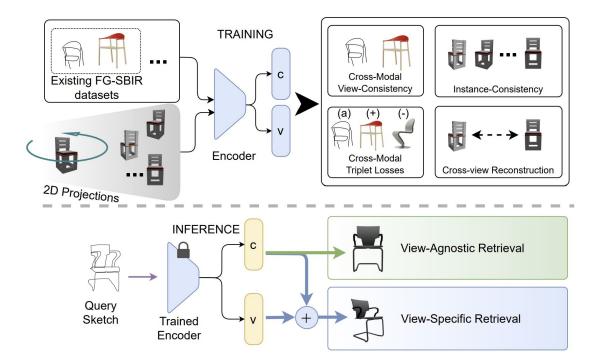
SketchX, CVSSP, University of Surrey, United Kingdom

Yi-Zhe

Song

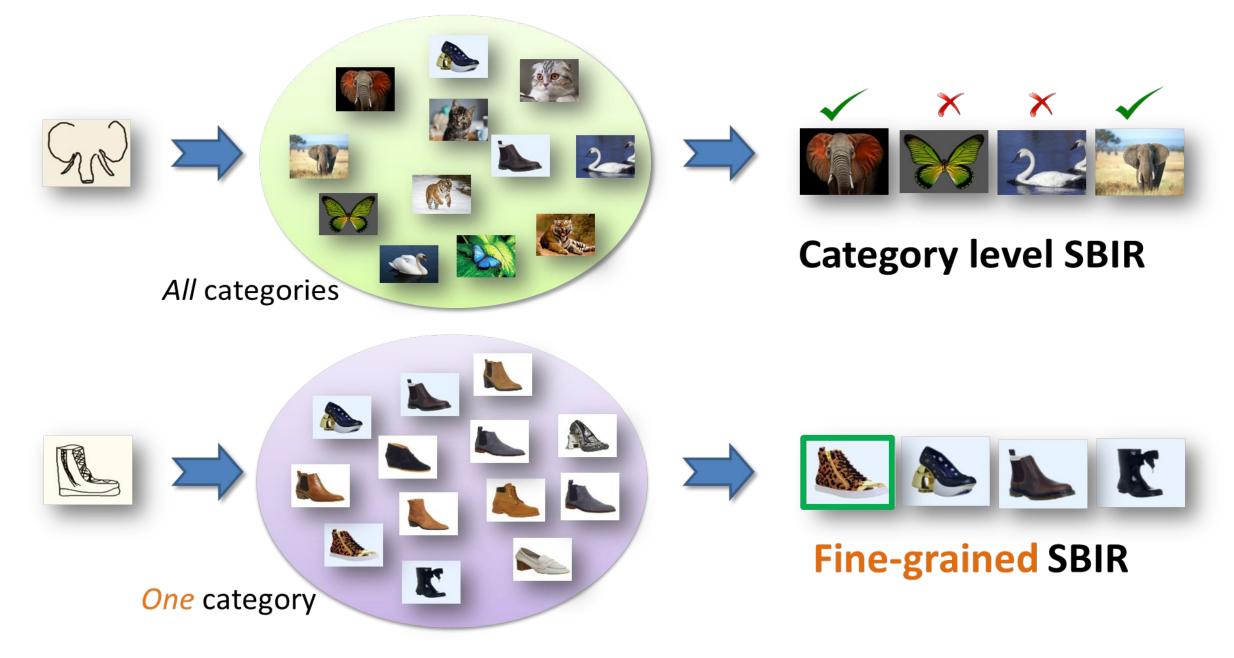
Overview

- We address a critical yet overlooked aspect of Fine-Grained Sketch-Based Image Retrieval (FG-SBIR) the choice of viewpoint while sketching. With very limited data collected from *fixed* viewpoint, sketch systems often mismatch between view of the user's sketch and that of its image in the gallery, leading to inaccurate retrievals.
- Specifically, we:
 - propose a *view-aware system* designed to accommodate both view-agnostic and view-specific FG-SBIR seamlessly.
 - introduce the use of *multi-view 2D rendered projections* of 3D objects promoting cross-modal view awareness.
 - present a *customisable cross-modal feature* through a disentanglement framework, allowing an easy switch between view-agnostic and view-specific retrieval modes.



• Satisfactory qualitative and quantitative results show this avenue of view-aware FG-SBIR to be a promising direction of future research.

Sketch-based Image Retrieval – Category-level to Fine-grained



Motivation

Issues with existing fine-grained SBIR literature:

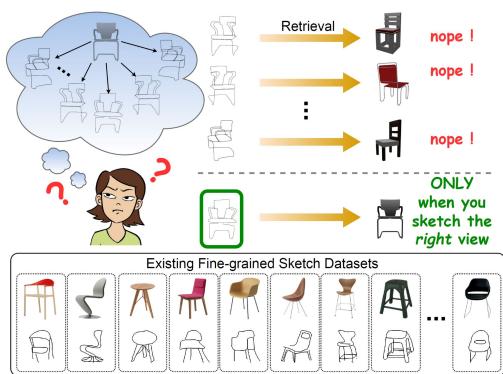
- → While searching a specific photo, users are often *confused* as to 'Which view should I sketch?'
- → Existing sketch-photo pairs are matched against a *single fixed view*. So a sketch drawn from a different view retrieves an *incorrect* image.
- → Absence of view-specific annotations in sketch-photo pairs.

What we desire:

- → Incorporate view-awareness in the task of FG-SBIR.
- → Alleviate the challenge of data-scarcity in having multi-view sketches of the same object for training.

How we achieve:

- → Introduce the use of multi-view 2D rendered projections of 3D objects to overcome the limitations of existing datasets,
- → Carefully design a training paradigm involving cross-modal discriminative guiding signals as well as reconstruction objectives catered to distill view-aware knowledge simultaneously.
- → Present a customisable cross-modal feature through a disentanglement framework, that can switch between retrieving the target instance in any view or in the specific view as that of the sketch.

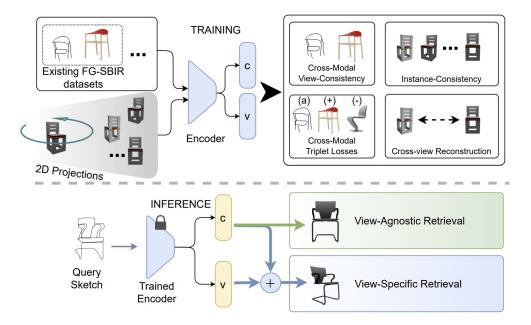


Pilot Study

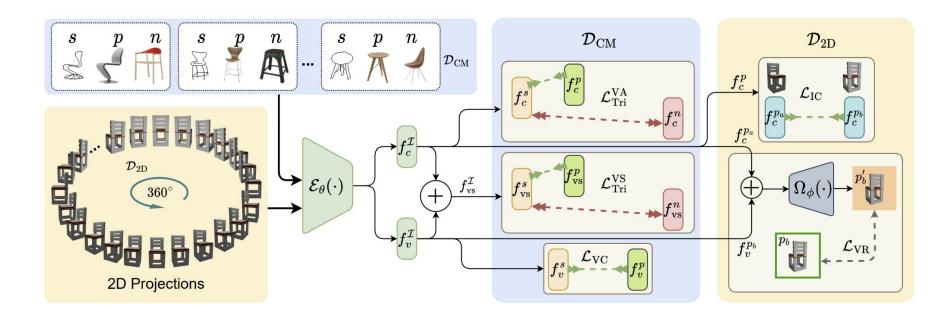
- We use a FG-SBIR model pre-trained on fixed single-view sketch-photo pairs.
- Experiment Setup:
 - Existing Photos of target instance matching the *exact* view of query-sketches (0°, 30° and 75°) are present in the test-gallery alongside other views.
 - Pilot Photos of target instance matching the *exact* view of the sketch are absent, but other views are present.
- Result:
 - Existing : 58.25% Top-1 Accuracy.
 - Pilot: 31.10% Top-1 Accuracy.
- Inference: FG-SBIR models trained on fixed single-view sketch-photo pairs cannot generalise to sketches whose view doesn't match its target photo.

Problem Definition

- → We recognise and put forth two novel tasks of FG-SBIR :
 - View-Agnostic FG-SBIR : retrieve a photo that matches any view of the target instance.
 - View-Specific FG-SBIR: retrieve that photo of the target instance whose view matches exactly with the query sketch.



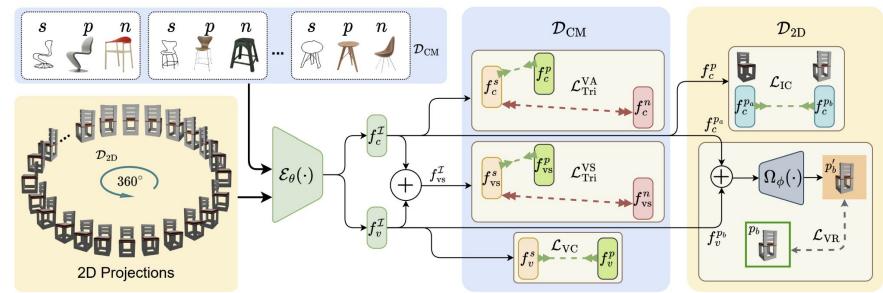
Training



Architecture and problem setup:

- → We employ a simple VGG-16 network as backbone feature extractor.
- → The encoder extracts and disentangles an input image into two component features: *view* and *content*.
- → To avoid high complexity of *3D*-based training paradigm, we **restrict our setup** to a *2D* learning paradigm.
- → To alleviate data-scarcity, we use two datasets:
 - a. Standard FG-SBIR dataset for cross-modal sketch-photo pairs (D_{CM}) with fixed view.
 - b. 2D projections freely rendered from pre-existing 3D shapes (D_{2D}) to harness view-aware knowledge.

Training (Contd.)



Learning objectives:

- Cross-modal Discriminative Learning for fine-grained matching:
 - Traditional sketch-photo triplet loss on content for view-agnostic discriminative learning.
 - Loss for view-specific feature $f_{vs}^{\mathcal{I}} = f_c^{\mathcal{I}} + f_v^{\mathcal{I}}$.
- Learning from 2D Projections to alleviate data-scarcity:
 - Instance-consistency loss across different projections of the same photo to train for view-agnostic retrieval.
 - Cross-view reconstruction loss to enrich latent space on view-specific knowledge from photos
 - Cross-modal View Consistency loss to instill cross-modal sketch-photo view-awareness.

 $\mathcal{L}_{\text{Tri}}^{\text{VA}} = \max\{0, \mu_c + \delta(f_c^s, f_c^p) - \delta(f_c^s, f_c^n)\}$

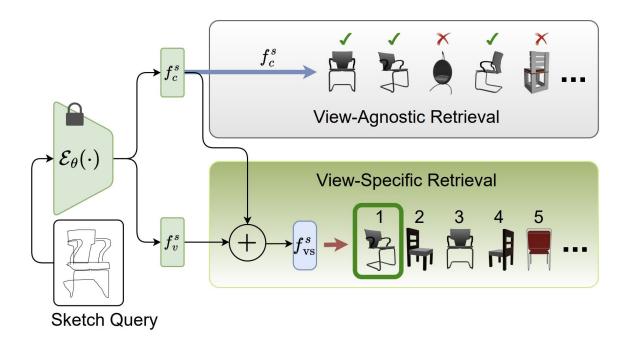
$$\mathcal{L}_{\mathrm{Tri}}^{\mathrm{VS}} = \max\{0, \mu_{\mathrm{vs}} + \delta(f_{\mathrm{vs}}^s, f_{\mathrm{vs}}^p) - \delta(f_{\mathrm{vs}}^s, f_{\mathrm{vs}}^n)\}$$

$$\mathcal{L}_{\rm IC} = \frac{1}{\binom{M_i}{2}} \sum_{a=1}^{M_i-1} \sum_{b=a+1}^{M_i} \left| \left| f_c^{p_a} - f_c^{p_b} \right| \right|_2$$

$$\mathcal{L}_{\rm VR} = \frac{1}{\binom{M_i}{2}} \sum_{a=1}^{M_i-1} \sum_{b=a+1}^{M_i} \left| \left| p_b' - p_b \right| \right|_2$$

$$\mathcal{L}_{\rm VC} = ||f_v^s - f_v^p||_2$$

Evaluation



We use **only one** model for **two** types of evaluation setups, just via feature selection:

- View-Agnostic FG-SBIR :
 - **Only** content feature $f_c^{\mathcal{I}}$ is used as 'view' is not necessary.
- View-Specific :
 - View-specific feature $f_{vs}^{\mathcal{I}}$ is used as besides *content* it **also** holds the *view*, which is needed for additionally matching the *view*.

Experiments

- Datasets used:
 - Dataset by Qi et al.^[8] 555 and 1005 sketch/3D-shape quadruplets of 'lamps' and 'chairs'.
 - QMUL-Chair-V2^[1] 2000 (400) sketch (photo) pairs.
- Competitors:
 - SOTA FG-SBIR methods Triplet-SN^[2], HOLEF-SN^[4], Jigsaw-CM^[5], Triplet-OTF^[6], StyleVAE^[7], StrongPVT^[9].
 - Variants with different backbones (CNN and vision transformer alternatives).
 - Alternative baselines using different mechanisms for disentanglement.
 - A few probable alternative ideas towards our motivation.

• Evaluation protocol and metric:

• Acc.@q i.e. percentage of sketches having true matched photo in the top-q list.

[1] Qian Yu, et al. Sketch me that shoe. In CVPR, 2016.

^[2] Patsorn Sangkloy, et al. The sketchy database: learning to retrieve badly drawn bunnies. In ACM TOG, 2016.

^[3] Aron Yuand, and Kristen Grauman. Fine-grained visual comparisons with local learning. In CVPR, 2014.

^[4] Jifei Song, et al. Deep spatial-semantic attention for fine grained sketch-based image retrieval. In ICCV, 2017.

^[5] Kaiyue Pang, et al. Solving mixed-modal jigsaw puzzle for fine-grained sketch-based image retrieval. In CVPR, 2020.

^[6] Ayan Kumar Bhunia, et al. Sketch less for more: On-the-fly fine-grained sketch-based image retrieval. In CVPR, 2020.

^[7] Aneeshan Sain, et al. Stylemeup: Towards style-agnostic sketch-based image retrieval. In CVPR, 2021.

^[8] Anran Qi, et. al. Toward Fine-Grained Sketch-Based 3D Shape Retrieval. In TIP, 2021.

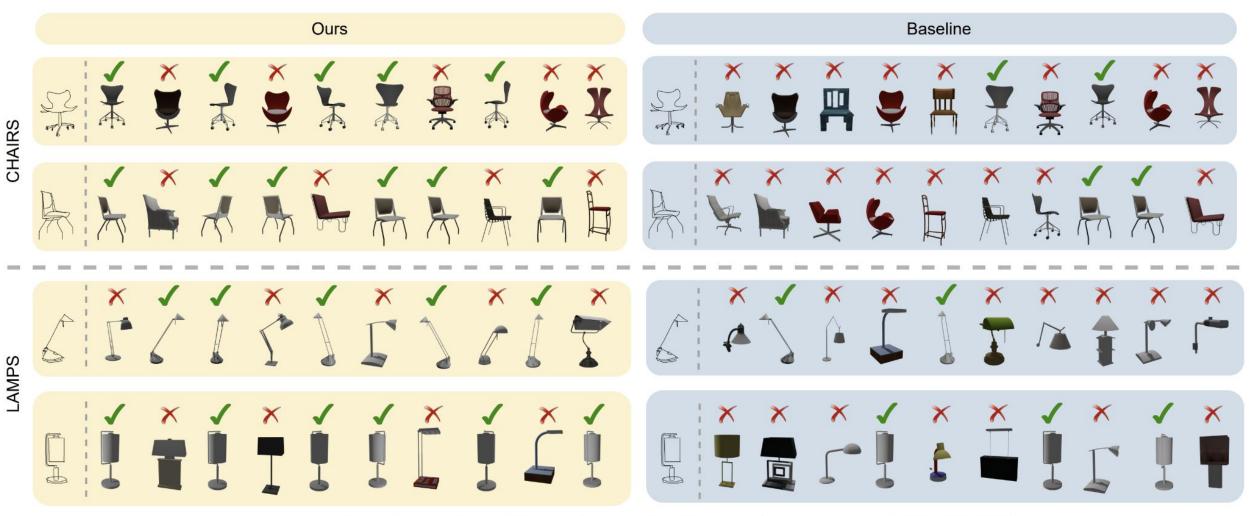
^[9] Aneeshan Sain, et al. Exploiting Unlabelled Photos for Stronger Fine-Grained SBIR. In CVPR, 2022.

Quantitative Results:

		View-Agnostic				View-Specific			
Methods		Chairs		Lamps		Chairs		Lamps	
		mAP@all	P@100	mAP@all	P@100	Top-1	Top-10	Top-1	Top-10
SoTA	Triplet-SN [75]	0.379	0.447	_		34.88	76.62	_	—
	HOLEF-SN [58]	0.398	0.454			37.23	78.63		
	Jigsaw-CM [43]	0.432	0.525		_	41.14	81.78	_	_
	Triplet-OTF [6]	0.447	0.514	_	_	42.21	82.79		-
	StyleVAE $[53]$	0.523	0.602	_	—	46.19	87.66		
	StrongPVT $[50]$	0.569	0.624	_		55.93	90.78		—
B-Backbones (Ours)	ViT [19]	0.385	0.415	0.338	0.399	34.38	76.18	33.96	75.53
	ResNet-50 22	0.451	0.536	0.415	0.511	47.15	88.02	46.21	87.11
	Inception-V3 $\begin{bmatrix} 6 \end{bmatrix}$	0.512	0.573	0.468	0.542	50.18	90.19	49.11	89.23
	ŶGG-16 [56]	0.615	0.693	0.552	0.664	60.71	91.18	60.56	90.62
	PVT [63]	0.689	0.742	0.628	0.716	67.11	91.78	65.35	92.97
B-Disentangle	B-TVAE [27]	0.394	0.449	0.345	0.414	36.89	77.91	35.28	74.92
	B-DVML 36	0.417	0.478	0.381	0.458	45.63	86.94	43.21	84.11
	B-Trio $\begin{bmatrix} 10 \end{bmatrix}$	0.572	0.629	0.501	0.582	58.68	90.85	55.63	89.02
B-Misc	B-Single [37]	0.221	0.281	0.184	0.233	18.68	45.68	17.91	44.69
	B-Pivot 12	0.316	0.401	0.295	0.362	55.92	90.62	53.62	88.65
	B-TwoModel	0.421	0.498	0.382	0.459	48.23	89.21	46.93	87.75
	B-NoProjection	0.592	0.667	0.529	0.611	50.79	89.93	48.73	87.98
${ m SoTA++}\ ({\cal D}_{ m CM}^{ m Chair*})$		0.410	0.470	0.270	0.451		0.2.00	41.00	01 40
	Triplet-SN [75]	0.416	0.476	0.378	0.451	43.09	83.29	41.32	81.48
	HOLEF-SN [58]	$\begin{array}{c c} 0.428 \\ 0.492 \end{array}$	0.502	0.387	$\begin{array}{c} 0.466 \\ 0.518 \end{array}$	$\begin{array}{c} 45.78\\ 48.51 \end{array}$	$87.33 \\ 88.59$	43.89	85.42
	Jigsaw-CM [43]	0.492 0.521	$\begin{array}{c} 0.539 \\ 0.591 \end{array}$	$\begin{array}{c} 0.442 \\ 0.476 \end{array}$	$0.518 \\ 0.571$	$48.51 \\ 49.53$	88.59	$\begin{array}{r} 46.51 \\ 47.49 \end{array}$	$86.67 \\ 87.71$
	Triplet-OTF [6] StyleVAE [53]	0.618	$0.591 \\ 0.675$	0.476 0.553	$0.571 \\ 0.644$	49.53 54.36	$89.00 \\ 90.71$	$\frac{47.49}{52.12}$	87.71 88.73
	StylevAE [53] StrongPVT [50]	0.618	$0.075 \\ 0.708$	0.553 0.584	$0.644 \\ 0.677$	$54.30 \\ 64.68$	$90.71 \\ 91.15$	$\frac{52.12}{62.02}$	88.73 90.15
	Ours-PVT [63]	0.841	0.708 0.771	$0.584 \\ 0.681$	0.077 0.749	70.26	91.15 92.86	62.02 68.32	90.15 93.04
		0.704	0.771	0.001	0.749	10.20	92.00	00.34	93.04

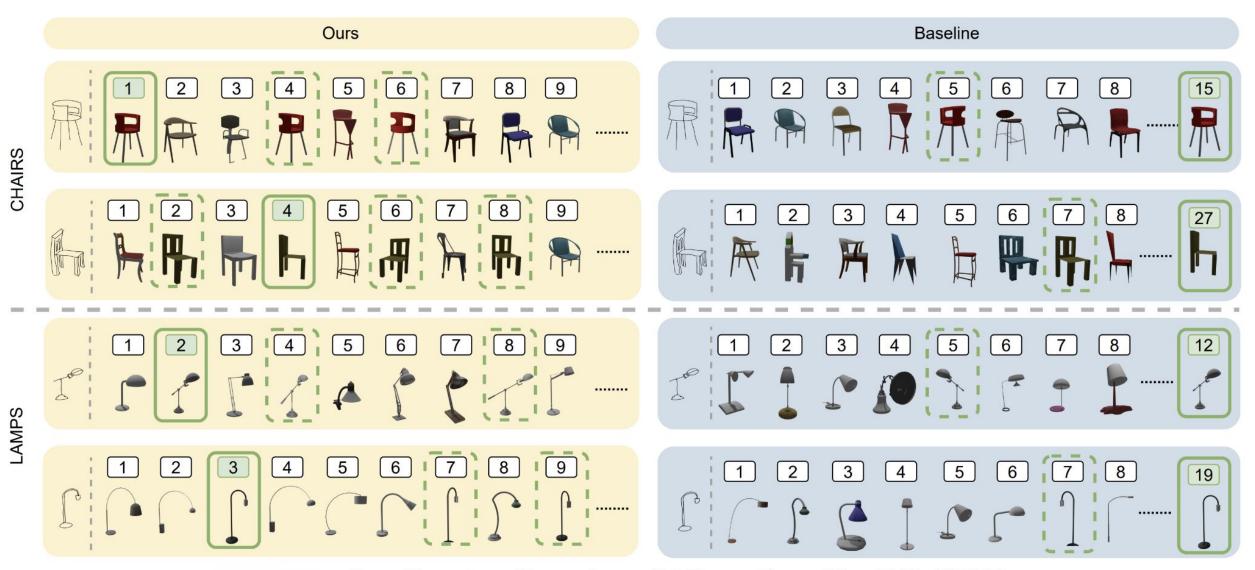
Quantitative evaluation for View-Aware FG-SBIR

Qualitative Results:



Qualitative Results of View-Agnostic FG-SBIR

Qualitative Results:



Qualitative Results of View-Specific FG-SBIR

Ablative Studies:

Objective-stripped	\mathcal{L}_{Tri}^{VA}	\mathcal{L}_{Tri}^{VS}	$\mathcal{L}_{\mathrm{VC}}$	$\mathcal{L}_{\mathrm{IC}}$	$\mathcal{L}_{\mathrm{VR}}$	Ours-VGG-16
[VS] Top-1 (%) [VA] mAP@all				$\begin{array}{c} 52.71 \\ 0.520 \end{array}$		$\begin{array}{c} 60.71 \\ 0.615 \end{array}$

Ablation of Loss Objectives on 'Chairs'

Performance under Low Data regime.

100

Baseline — Ours

Acc@1

60

45

30

15

% 10

30

50

View-specific FG-SBIR

70

100

0.75

0.50

0.25

mAP@all

30

% 10

50

View-agnostic FG-SBIR

70

Other findings:

- Optimal feature dimension for both *content* and *view* features were empirically found to be 128.
- Our-VGG16 utilises 14.71 mil. params with ~ 40.18 GFLOPs.
- It takes 0.16ms (0.21ms) for view-specific (agnostic) retrieval per query during evaluation.

Thank You! SketchX http://sketchx.ai

https://aneeshan95.github.io/Sketch_Freeview/