ETHzürich IMPERIAL

Hyperion – A fast, versatile symbolic Gaussian Belief Propagation Framework for Continuous-Time SLAM

David Hug¹, Ignacio Alzugaray², Margarita Chli¹

¹Vision for Robotics Lab (V4RL), ETH Zurich and University of Cyprus ²Dyson Robotics Lab, Imperial College London

Presented at the European Conference on Computer Vision 2024

Related Work Discrete-Time SLAM

Related Work

Non-Linear Least Squares Optimization (Single Agent)

Surface Plot of Cumulative Residuals

Minimization Problem^[1]

$$\boldsymbol{\Theta}^* = \underset{\boldsymbol{\Theta}}{\operatorname{argmin}} \left[\frac{1}{2} \sum_{s \in \mathcal{S}} \sum_{t \in \mathcal{T}} \|\bar{\mathbf{r}}(t, \theta)\|^2 \right] \text{ with } \theta \subseteq \boldsymbol{\Theta}$$

OptimalSum over square of weighted residuals stemmingParametersfrom all sensors and measurement times

Weighted Residual

$$\|\bar{\mathbf{r}}(t,\theta)\|^2 = \bar{\mathbf{r}}^\top \bar{\mathbf{r}} = \mathbf{r}^\top \boldsymbol{\Sigma}_m^{-1} \mathbf{r}$$
Precision

Residual
$$\hat{\mathbf{M}}$$
 Distance \mathcal{M} Metric $\mathbf{r}(t, \theta) = \hat{\mathbf{m}}(t, \theta) \boxminus_{\mu} \mathbf{m}(t, \theta)$

Predicted Actual Measurement Measurement

Related Work Continuous-Time SLAM²

Methodology Approach

Mathematical expressions for spline-related *residuals remain tedious and error-prone*, leading to *suboptimal performance*

Standard NLLS optimizers *neither model uncertainties* nor *do they (trivially) extend to distributed computations* across multiple agents

Approach Leverage Gaussian Belief Propagation (GBP) for *distributed, stochastic inference* along with *automating code generation* Approach Extend SymForce^[1] to *delegate the generation of performance-critical code* within the framework

Experiments Code Generation

Translation of complex expressions and symbolic optimization High-performance machine code lacking interpretability

Setup			Pose [s]		Velocity [s]		Acceleration [s]		Avg.
\mathcal{L}	k	$\partial/\partial \mathcal{B}$	Ours	Basalt	Ours	Basalt	Ours	Basalt	Speedup
$\mathbb{SO}(3)$	4	X	1.64e-7	3.16e-7	9.49e-8	2.90e-7	1.12e-7	3.28e-7	2.64x
$\mathbb{SO}(3)$	4	\checkmark	5.03e-7	6.70e-6	4.05e-7	7.82e-6	5.11e-7	9.46e-6	17.05x
$\mathbb{SO}(3)$	5	×	1.96e-7	4.14e-7	1.32e-7	3.67e-7	1.39e-7	3.96e-7	2.58x
$\mathbb{SO}(3)$	5	\checkmark	6.89e-7	1.08e-5	5.82e-7	1.27e-5	7.87e-7	1.58e-5	19.19x
$\mathbb{SO}(3)$	6	×	2.17e-7	4.78e-7	1.82e-7	4.42e-7	1.81e-7	4.83e-7	2.43x
$\mathbb{SO}(3)$	6	\checkmark	8.19e-7	1.57e-5	7.51e-7	1.87e-5	1.01e-6	2.43e-5	22.71x
$\mathbb{SE}(3)$	4	×	1.62e-7	7.03e-7	1.38e-7	7.46e-7	1.34e-7	6.88e-7	4.96x
$\mathbb{SE}(3)$	4	\checkmark	5.71e-7	4.69e-5	9.11e-7	5.35e-5	1.12e-6	6.25e-5	65.56x
$\mathbb{SE}(3)$	5	×	1.96e-7	7.38e-7	1.91e-7	8.73e-7	1.70e-7	9.15e-7	4.57x
$\mathbb{SE}(3)$	5	\checkmark	7.32e-7	9.64e-5	1.27e-6	9.44e-5	1.47e-6	1.14e-4	94.53x
$\mathbb{SE}(3)$	6	×	2.53e-7	9.11e-7	2.34e-7	1.12e-6	2.23e-7	1.12e-6	4.47x
$\mathbb{SE}(3)$	6	\checkmark	9.29e-7	1.25e-4	1.54e-6	1.67e-4	1.99e-6	1.75e-4	110.31x

Performance comparison between our auto-generated and optimized B-Spline implementation and the hand-crafted implementation from Sommer et al. [1]

Setup		Pose [s]		Velocity [s]		Acceleration [s]		Avg.		
L	k	\square							Speedup	
$\mathbb{SO}(3)$	4		2.64x							
SO(3) 4 Residual and Jacobian evaluations represent <i>a major</i>										
$\mathbb{SO}(3)$	5	perform	2.58x							
$\mathbb{SO}(3)$	5		19.19x							
$\mathbb{SO}(3)$	6	~	2.1/e-/	4./8e-/	1.826-7	4.42e-7	1.816-7	4.836-7	2.43x	
$\mathbb{SO}(3)$	6	\checkmark	8.19e-7	1.57e-5	7.51e-7	1.87e-5	1.01e-6	2.43e-5	22.71x	
$\mathbb{SE}(3)$	4	X	1.62e-7	7.03e-7	1.38e-7	7.46e-7	1.34e-7	6.88e-7	4.96x	
$\mathbb{SE}(3)$	4	\checkmark	5.71e-7	4.69e-5	9.11e-7	5.35e-5	1.12e-6	6.25e-5	65.56x	
SE(3)	5	X	1.96e-7	7.38e-7	1.91e-7	8.73e-7	1.70e-7	9.15e-7	4.57x	
$\mathbb{SE}(3)$	5	\checkmark	7.32e-7	9.64e-5	1.27e-6	9.44e-5	1.47e-6	1.14e-4	94.53x	
$\mathbb{SE}(3)$	6	X	2.53e-7	9.11e-7	2.34e-7	1.12e-6	2.23e-7	1.12e-6	4.47x	
SE(3)	6	\checkmark	9.29e-7	1.25e-4	1.54e-6	1.67e-4	1.99e-6	1.75e-4	110.31x	

Performance comparison between our auto-generated and optimized B-Spline implementation and the hand-crafted implementation from Sommer et al. [1]

Minimization Problem^[1]

$$\boldsymbol{\Theta}^* = \operatorname*{argmin}_{\boldsymbol{\Theta}} \left[\frac{1}{2} \sum_{s \in \mathcal{S}} \sum_{t \in \mathcal{T}} \| \bar{\mathbf{r}}(t, \theta) \|^2 \right] \text{ with } \theta \subseteq \boldsymbol{\Theta}$$

Stochastic Continuous-Time Factor Graph (Visual)

[1] Agarwal et al., Ceres Solver
 [2] Ortiz et al., CVPR 2020
 [3] Ortiz et al., ICRA 2022

Minimization Problem^[1] $\boldsymbol{\Theta}^* = \underset{\boldsymbol{\Theta}}{\operatorname{argmin}} \left[\frac{1}{2} \sum_{s \in S} \sum_{t \in \mathcal{T}} \|\bar{\mathbf{r}}(t, \theta)\|^2 \right] \text{ with } \theta \subseteq \boldsymbol{\Theta} \blacktriangleleft$ Simplification Stochastic Optimization Problem^[2,3] $\Theta^* = \underset{\Theta}{\operatorname{argmax}} \log \left(p\left(\Theta\right) \right) = \underset{\Theta}{\operatorname{argmin}} \sum_{i} \|\bar{\mathbf{r}}_i \left(t_i, \theta_i \right)\|^2$ $\underset{\Theta}{\operatorname{Probability}} \quad \Theta \quad \underset{i}{\operatorname{Residuals}}$ Distribution $p(\boldsymbol{\Theta}) = \prod f_i(t_i, \theta_i) \propto \prod \exp\left(-E_i(t_i, \theta_i)\right) - \mathbf{I}$ Assume Gaussian Distributions

Local Message Passing in the Factor Graph

[1] Agarwal et al., Ceres Solver
 [2] Ortiz et al., CVPR 2020
 [3] Ortiz et al., ICRA 2022

Node Update

"What do my neighbors believe about me?"

Node Update

"What do my neighbors believe about me?"

Node-to-Factor Messages

"Pass the updated belief to neighboring factors"

"What do my neighbors believe about me?"

Factor Update

"Reevaluate the Residual and Jacobian"

Node-to-Factor Messages

"Pass the updated belief to neighboring factors"

"What do my neighbors believe about me?"

Factor Update

 $\eta_i^0 = -\overline{\mathbf{J}}_i^{0,\top} \overline{\mathbf{r}}_i^0$

"Reevaluate the Residual and Jacobian"

Node-to-Factor Messages

"Pass the updated belief to neighboring factors"

 $\eta'_{f_i \to n_a} = \eta_a^0 - \mathbf{\Lambda'}_{aa}^{\top} \mathbf{\Lambda'}_{bb}^{-1} \eta'_b$

"Marginalize the probability distribution for a neighboring node"

"Marginalize the probability distribution for a neighboring node"

Experiments Motion Capture Setups

Absolute Setup (Simulation)

In slow motion: The proposed continuous-time GBP solver (in magenta) and the conventional Ceres solver (in white) converge to identical solutions close to the ground truth (in green) even under poor initialization (±1.00 m/rad) and substantial pose measurement noise (±0.05 m/rad).

Absolute Setup (ChArUco)

In slow motion: The proposed GBP solver (in magenta) and Ceres (in white) converge to identical solutions close in the ChArUco experiment (with initialization at identity).

Experiments Localization Setup

Left: Estimated motion yielded by the proposed GBP-based framework (in magenta) and Ceres (in white) across iterations and plotted against ground truth (in white). Right: Resulting errors from Hyperion and Ceres are identical.

Experiments Ablation on Message Dropouts

(a) Dropout Convergence: Absolute

(b) Dropout Convergence: Localization

Graph energy vs. number of iterations conditioned on the message dropout percentage.

Experiments Ablation on B- and Z-Splines

(a) Convergence: Absolute

(b) Convergence: Localization

Graph energy conditioned on the spline and solver type across iterations.

Conclusions

1.) Presents the *first open-source GBP-based continuoustime optimization framework* with *symbolic code generation*

Conclusions

1.) Presents the *first open-source GBP-based continuoustime optimization framework* with *symbolic code generation*

2.) Implements the *fastest, Ceres-interoperable*^[1] *B- and Z-Spline implementations* to date, further alleviating computational limitations

Conclusions

1.) Presents the *first open-source GBP-based continuoustime optimization framework* with *symbolic code generation*

2.) Implements the *fastest, Ceres-interoperable*^[1] *B- and Z-Spline implementations* to date, further alleviating computational limitations

3.) **Demonstrates the efficacy** of the proposed framework *in absolute and localization setups* Find us on GitHub!

