
Hyperion – A fast, versatile symbolic
Gaussian Belief Propagation Framework
for Continuous-Time SLAM

David Hug1, Ignacio Alzugaray2, Margarita Chli1

1Vision for Robotics Lab (V4RL), ETH Zurich and University of Cyprus
2Dyson Robotics Lab, Imperial College London

Presented at the European Conference on Computer Vision 2024

Discretized
Pose Estimate
Tracked Visual
Features/Cues

Related Work
Discrete-Time SLAM

Source: Mur-Artal et al.

Source: Mur-Artal et al.

Time-Continuous
Ground Truth Pose

Conventional pipelines assume
synchronized inputs and steady

sensor acquisition rates

What about intermittent measurements falling
between discretized pose estimates?

Related Work
Non-Linear Least Squares Optimization
(Single Agent)

Surface Plot of
Cumulative Residuals

Initialization Point

Global Optimum

Minimization Problem[1]

Related Work
Continuous-Time SLAM2

Methodology
Approach

Mathematical expressions for spline-related residuals remain tedious
and error-prone, leading to suboptimal performance

Standard NLLS optimizers neither model uncertainties nor do they
(trivially) extend to distributed computations across multiple agents

Approach
Leverage Gaussian Belief Propagation (GBP) for distributed, stochastic

inference along with automating code generation

Approach
Extend SymForce[1] to delegate the generation of
performance-critical code within the framework

Methodology
Code Generation

High-level, symbolic mathematical
expressions and residuals

Translation of complex expressions
and symbolic optimization

High-performance machine code
lacking interpretability

Experiments
Code Generation

Performance comparison between our auto-generated and optimized B-Spline
implementation and the hand-crafted implementation from Sommer et al. [1]

Experiments
Code Generation

Insight
Residual and Jacobian evaluations represent a major

performance-limitation, rendering 110x speedups momentous

Methodology
Continuous-Time Gaussian Belief Propagation (GBP)

Minimization Problem[1]

Methodology
Continuous-Time Gaussian Belief Propagation (GBP)

Minimization Problem[1]

Continuous-Time Factor Graph (Visual)

Stochastic Continuous-Time Factor Graph (Visual)

Stochastic Optimization Problem[2,3]

Simplification

Methodology
Continuous-Time Gaussian Belief Propagation (GBP)

Factor to Variable
Variable to Factor

Belief Update

Local Message Passing in the Factor Graph

Methodology
Continuous-Time Gaussian Belief Propagation (GBP)

“What do my neighbors believe about me?”

Node Update

Methodology
Continuous-Time Gaussian Belief Propagation (GBP)

“Pass the updated belief to neighboring factors”

Node-to-Factor Messages

Methodology
Continuous-Time Gaussian Belief Propagation (GBP)

“Reevaluate the Residual and Jacobian”

Factor Update

Methodology
Continuous-Time Gaussian Belief Propagation (GBP)

Factor-to-Node Messages

“Marginalize the probability distribution
for a neighboring node”

Methodology
Continuous-Time Gaussian Belief Propagation (GBP)

Approach
Evaluate the suitability of the combined GBP-based
CT-SLAM method in absolute and localization setups

Experiments
Motion Capture Setups

Experiments
Localization Setup

Left: Estimated motion yielded by the proposed GBP-based framework (in magenta) and Ceres (in white) across iterations and
plotted against ground truth (in white). Right: Resulting errors from Hyperion and Ceres are identical.

Experiments
Ablation on Message Dropouts

Graph energy vs. number of iterations conditioned on the message dropout percentage.

Experiments
Ablation on B- and Z-Splines

Graph energy conditioned on the spline and solver type across iterations.

Conclusions

1.) Presents the first open-source GBP-based continuous-
time optimization framework with symbolic code generation

Conclusions

2.) Implements the fastest, Ceres-interoperable[1] B- and Z-
Spline implementations to date, further alleviating

computational limitations

Conclusions

3.) Demonstrates the efficacy of the proposed framework
in absolute and localization setups

Find us on GitHub!

