ETHzürich IMPERIAL

Hyperion – A fast, versatile symbolic Gaussian Belief Propagation Framework for Continuous-Time SLAM

David Hug1, Ignacio Alzugaray2, Margarita Chli1

1Vision for Robotics Lab (V4RL), ETH Zurich and University of Cyprus 2Dyson Robotics Lab, Imperial College London

Presented at the European Conference on Computer Vision 2024

Discrete-Time SLAM

Related Work

Non-Linear Least Squares Optimization (Single Agent)

Surface Plot of Cumulative Residuals

Minimization Problem[1]

$$
\mathbf{\Theta}^* = \underset{\mathbf{\Theta}}{\text{argmin}} \left[\frac{1}{2} \sum_{s \in \mathcal{S}} \sum_{t \in \mathcal{T}} ||\bar{\mathbf{r}}(t, \theta)||^2 \right] \text{ with } \theta \subseteq \mathbf{\Theta}
$$

Sum over square of weighted residuals stemming **Optimal Parameters** from all sensors and measurement times

Weighted Residual

$$
\|\bar{\mathbf{r}}(t,\theta)\|^2 = \bar{\mathbf{r}}^\top \bar{\mathbf{r}} = \mathbf{r}^\top \mathbf{\Sigma}_m^{-1} \mathbf{r}
$$

Precision

Residual	Distance
$\mathbf{r}(t, \theta) = \hat{\mathbf{m}}(t, \theta) \boxminus_{\mu} \mathbf{m}(t, \theta)$	

Predicted Measurement

Actual Measurement

Related Work Continuous-Time SLAM2

Methodology Approach

Mathematical expressions for spline-related *residuals remain tedious and error-prone*, leading to *suboptimal performance*

Standard NLLS optimizers *neither model uncertainties* nor *do they (trivially) extend to distributed computations* across multiple agents

Approach Leverage Gaussian Belief Propagation (GBP) for *distributed, stochastic inference* along with *automating code generation*

Approach Extend SymForce[1] to *delegate the generation of performance-critical code* within the framework

Experiments Code Generation

High-level, symbolic mathematical expressions and residuals

Translation of complex expressions and symbolic optimization

High-performance machine code lacking interpretability

Performance comparison between our auto-generated and optimized B-Spline

implementation and the hand-crafted implementation from Sommer et al. [1]

Performance comparison between our auto-generated and optimized B-Spline implementation and the hand-crafted implementation from Sommer et al. [1]

Minimization Problem[1]

$$
\mathbf{\Theta}^* = \underset{\mathbf{\Theta}}{\text{argmin}} \left[\frac{1}{2} \sum_{s \in \mathcal{S}} \sum_{t \in \mathcal{T}} \lVert \bar{\mathbf{r}}(t, \theta) \rVert^2 \right] \text{ with } \theta \subseteq \mathbf{\Theta}
$$

Stochastic Continuous-Time Factor Graph (Visual)

[1] Agarwal et al., Ceres Solver [2] Ortiz et al., CVPR 2020 [3] Ortiz et al., ICRA 2022

Minimization Problem[1] $\mathbf{\Theta}^* = \operatorname*{argmin}_{\mathbf{\Theta}} \left[\frac{1}{2} \sum_{s \in \mathcal{S}} \sum_{t \in \mathcal{T}} ||\bar{\mathbf{r}}(t, \theta)||^2 \right]$ with $\theta \subseteq \mathbf{\Theta}$ **Simplification Stochastic Optimization Problem**^[2,3] $\mathbf{\Theta}^* = \operatornamewithlimits{argmax}_{\mathbf{\Theta}} \log \left(p\left(\mathbf{\Theta}\right)\right) = \operatornamewithlimits{argmin}_{\mathbf{\Theta}} \sum_i \lVert\bar{\mathbf{r}}_i\left(t_i, \theta_i\right)\rVert^2$
Probability $\parallel \mathbf{\Theta}$ i Residuals **Distribution** $p(\mathbf{\Theta}) = \prod f_i(t_i, \theta_i) \propto \prod \exp(-E_i(t_i, \theta_i))$ **Assume Gaussian Distributions**

Local Message Passing in the Factor Graph

[1] Agarwal et al., Ceres Solver [2] Ortiz et al., CVPR 2020 [3] Ortiz et al., ICRA 2022

Node Update

"What do my neighbors believe about me?"

Node Update

"What do my neighbors believe about me?"

Node-to-Factor Messages

"Pass the updated belief to neighboring factors"

"What do my neighbors believe about me?"

Factor Update

"Reevaluate the Residual and Jacobian"

Node-to-Factor Messages

"Pass the updated belief to neighboring factors"

"What do my neighbors believe about me?"

Factor Update

 $\eta_i^0 = -\mathbf{\bar J}^{0,\top}_i \mathbf{\bar r}^0_i$

"Reevaluate the Residual and Jacobian"

Node-to-Factor Messages

"Pass the updated belief to neighboring factors"

 $\eta'_{f_i\rightarrow n_a} = \eta_a^0 - \boldsymbol{\Lambda'}_{aa}^{\top} \boldsymbol{\Lambda'}_{bb}^{-1} \eta'_{b}$

"Marginalize the probability distribution for a neighboring node"

"Marginalize the probability distribution for a neighboring node"

Experiments Motion Capture Setups

Absolute Setup (Simulation)

In slow motion: The proposed continuous-time GBP solver (in magenta) and the conventional Ceres solver (in white) converge to identical solutions close to the ground truth (in green) even under poor initialization (±1.00 m/rad) and substantial pose measurement noise (±0.05 m/rad).

Absolute Setup (ChArUco)

In slow motion: The proposed GBP solver (in magenta) and Ceres (in white) converge to identical solutions close in the ChArUco experiment (with initialization at identity).

Experiments Localization Setup

Left: Estimated motion yielded by the proposed GBP-based framework (in magenta) and Ceres (in white) across iterations and plotted against ground truth (in white). Right: Resulting errors from Hyperion and Ceres are identical.

Experiments Ablation on Message Dropouts

(a) Dropout Convergence: Absolute

(b) Dropout Convergence: Localization

Graph energy vs. number of iterations conditioned on the message dropout percentage.

Experiments Ablation on B- and Z-Splines

(a) Convergence: Absolute

(b) Convergence: Localization

Graph energy conditioned on the spline and solver type across iterations.

Conclusions

1.) Presents the *first open-source GBP-based continuoustime optimization framework* with *symbolic code generation*

Conclusions

1.) Presents the first open-source GBP-based continuoustime optimization framework with symbolic code generation

2.) Implements the *fastest, Ceres-interoperable[1] B- and Z-Spline implementations* to date, further alleviating computational limitations

Conclusions

1.) Presents the first open-source GBP-based continuoustime optimization framework with symbolic code generation

2.) Implements the fastest, Ceres-interoperable^[1] B- and Z-**Spline implementations to date, further alleviating** computational limitations

3.) *Demonstrates the efficacy* of the proposed framework *in absolute and localization setups*

Find us on GitHub!

