

Paper & Code

Forecasting Future Videos from Novel Views via Disentangled 3D Scene Representation

Sudhir Yarram^{1,} Junsong Yuan¹

¹State University of New York at Buffalo

Motivation

- The task of Video extrapolation in space and time (VEST) enables viewers to forecast a 3D scene into the future and view it from novel viewpoints.
- Our approach disentangles scene geometry from motion by lifting 2D scenes to 3D point clouds, enabling high-quality future video rendering from novel views.

Background

Future Forecasting:

Video Prediction

Shi et. Al 2015

Future frames

Future Forecasting

Video Prediction + Novel View Synthesis

Past video

Challenges

Three major challenges for future forecasting:

Accurate estimation of scene geometry

Forecasting future motion

Synthesizing disoccluded content

Related Work

- Recent approaches propose
 - To learn an entangled representation
 - Aiming to model layered scene geometry, motion forecasting and novel view synthesis together
 - However, they rely on simplified affine motion and homography-based warping for each scene layer, resulting in inaccurate video extrapolation.

Approach

Our approach

- Disentangles scene geometry from scene motion, via lifting the 2D scene to 3D point clouds.
- Additionally, we forecast **future 3D motion** by disentangling ego-motion of static objects from residual motion of dynamic objects.

Approach

- Our framework aims to forecast a 3D scene into the future and view it from novel viewpoints. It comprises three primary steps:
 - **Constructing 3D point clouds**
 - □ Forecasting future 3D motion
 - **Splatting and Rendering**

Approach

- For Constructing 3D Point Cloud, we leverage explicit 3D scene geometry (via depth estimation) to lift 2D scene into 3D point clouds.
- Forecasting Future 3D motion, results from both camera and object motions.
 - □ First, we forecast ego-motion by leveraging static background regions.
 - □ Then, predicted residual motion for dynamic objects (e.g., cars, persons).

Results

Quantitative results on Video Prediction Results on KITTI and Cityscapes

			Cityscapes (512×1024)					KITTI (256 × 832)						
			t –	- 1	t –	- 5	t +	- 10	t -	+1	<i>t</i> -	+3	t +	- 5
Method 1	Publication	Inputs	$SSIM\uparrow$	LPIPS↓	SSIM↑	LPIPS↓	$\mathrm{SSIM}\uparrow$	LPIPS↓	$SSIM\uparrow$	LPIPS↓	$\mathrm{SSIM}\uparrow$	LPIPS↓	SSIM† I	LPIPS↓
CorrWise [10]	CVPR'22	R	92.8	8.5	83.9	15.0	75.1	21.7	82.0	17.2	73.0	22.0	66.7	25.9
SADM [1]	CVPR'21	R+L+F	95.9	7.6	83.5	14.9	N/A	N/A	83.1	14.4	72.4	24.6	64.7	31.2
DMVFN [13]	CVPR'23	R	95.7	5.6	83.5	14.9	N/A	N/A	88.5	10.7	78.0	19.3	70.5	26.0
WALDO [19]	ICCV'23	R+L+F	95.7	$\underline{4.9}$	85.4	$\underline{10.5}$	77.1	<u>15.8</u>	86.7	10.8	76.6	<u>16.3</u>	70.2	<u>20.6</u>
VEST-MPI [55]	ECCV'22	R	N/A	N/A	N/A	N/A	N/A	N/A	N/A	15.6	N/A	$\overline{34.4}$	N/A	44.7
Ours		R+L+D	96.4	4.6	86.2	9.8	78.0	14.9	<u>87.7</u>	10.1	77.6	15.4	71.3	19.8

Quantitative results of Novel View Synthesis on KITTI

Extrapo	olation	In spac	e only	In time only			
			SSIM↑	LPIF	$PS (\times 1)$	$(0^{-2})\downarrow$	
Metho	DI II 54		t+1	t+3	t+5		
LDI [4	2] ECCV'18	N/A	57.2		N/A		
MINE 2	0] ICCV'21	10.8	82.2		N/A		
Tucker et al. [4	1] CVPR'20	N/A	73.3		N/A		
PredRNNV2 [4	8] TPAMI'22	N/A	N/A	30.8	45.7	54.2	
VEST-MPI [5	5] ECCV'22	$\underline{8.5}$	82.5	<u>11.5</u>	<u>28.8</u>	39.1	
Ou	rs	5.2	94.6	8.1	18.6	20.4	

Results

Qualitative Comparison with Baselines

Thank You!