

nuCraft: Crafting High Resolution 3D Semantic Occupancy for Unified 3D Scene Understanding

Poster Session #1
Board ID #322
Tue 1 Oct 10:30 a.m. CEST — 12:30 p.m. CEST

Project page: https://poodarchu.github.io/publication/eccv2024_nucraft/

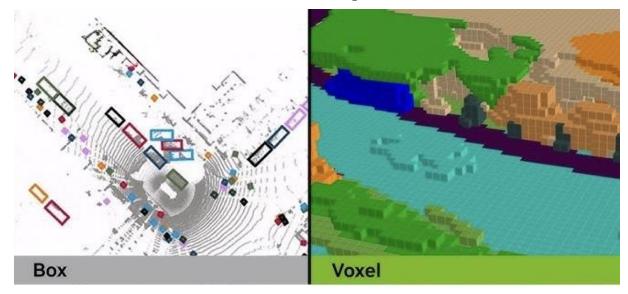
Benjin ZHU¹, Zhe WANG², Hongsheng Ll^{1,3}

¹CUHK MMLab ²SenseTime Research ³CPII under InnoHK

3D Semantic Occupancy Prediction

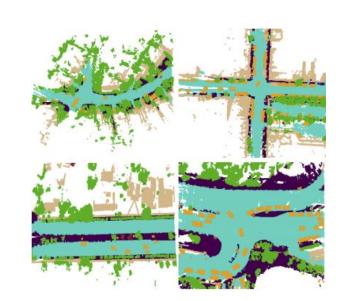
Predicting the complete 3D scene inside a certain fixed volume from camera, LiDAR or other inputs.

- Understand the 3D structure of a scene
- Determine which spaces are occupied or free
- Assign semantic labels to occupied areas

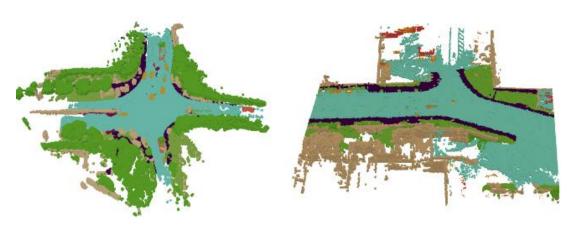


Benchmarks

• Occ3D & its variants



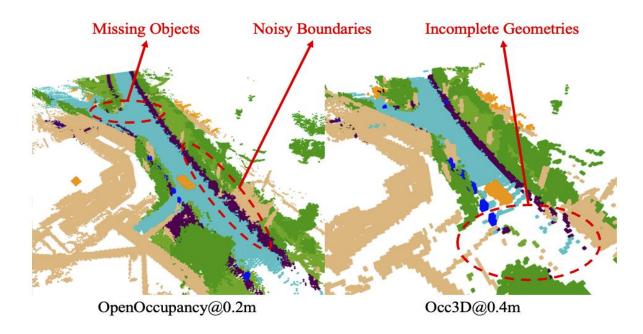
OpenOccupancy



Limitations

Existing 3D semantic occupancy benchmarks in AD are limited by

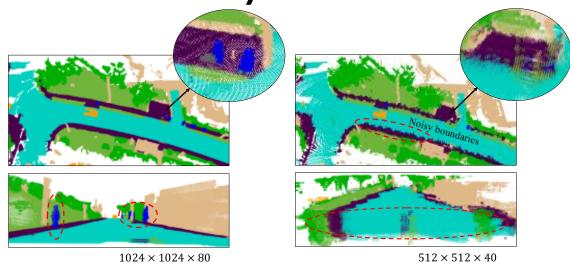
- Low resolution (up to [512×512×40] with 0.2m voxel size)
- Inaccurate annotations inherited from noise and errors in raw data



Indirect predictions at 0.4m or lower, followed by post upsampling

Contribution

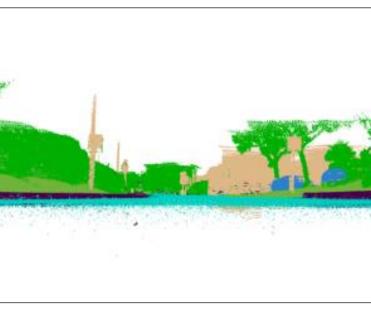
- nuCraft, a high-resolution 3D semantic occupancy dataset which offers 8× resolution and more precise annotations
- A general and robust data generation pipeline for creating high-quality 3D semantic occupancy GT from noisy data with no human effort

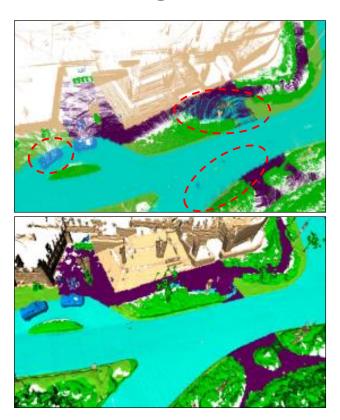


 VQ-Occ, a novel 3D occupancy prediction framework which decouples the encoding of occupancy GT and semantic occupancy prediction, achieving direct high-resolution prediction and SOTA performance

Creation of nuCraft

- Static/Moving Parts Separation & Continuous Scenes Grouping
- 2. LiDAR Sequence Aggregation with Pose Estimation
- 3. Voxel Densification with Semantic Mesh Reconstruction
- 4. Occupancy GT Generation with necessary post-processing





Dataset Quality Check

 Foreground: 3D Object Detection & Background: Drivable Area Segmentation

Table 1: Comparison of 3D object detection performance.

Table 2: Comparison of drivable area segmentation performance.

Method	$ \mathbf{mAP} $
OpenOccupancy	58.4
nuCraft@0.2	62.7
nuCraft@0.1	77.9

Method	$\overline{\text{IoU}}$	mIoU
OpenOccupancy	71.2	64.1
nuCraft@0.2	78.3	69.8
nuCraft@0.1	84.2	75.7

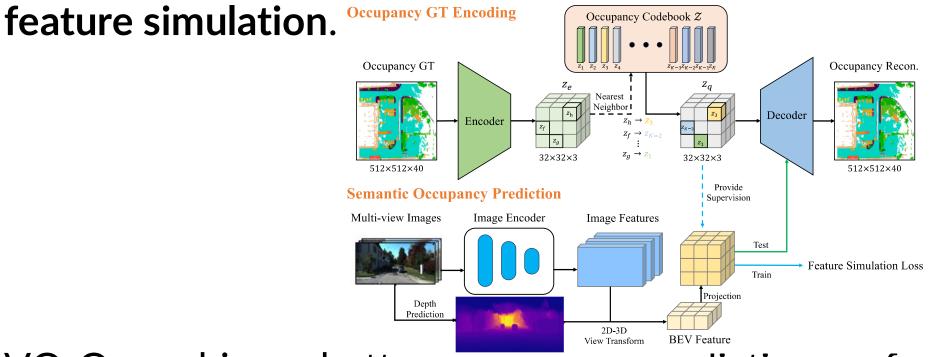
Ablation

Table 3: Component of data generation. The first row denotes the default nuCraft GT at 0.2m resolution. Components are removed one-by-one from the first-row.

Component Removed	mAP	mIoU
None (Full nuCraft@0.2)	62.7	69.8
S/MPS	62.1	67.2
CSG	62.4	66.5
PE	60.6	66.1
Mesh	58.7	63.2
Clean	62.7	69.7

VQ-Occ: Vector Quantized Occupancy Prediction

 Occupancy GT Encoding: VQ-VAE efficiently encodes high-res occupancy GT into a compact latent space, transforming 3D occ prediction into VQ



 VQ-Occ achieves better occupancy prediction performance, and achieves direct prediction of 3D semantic occupancy at high resolution (0.2 or finer) without post-upsampling

Results

Table 4: 3D Semantic occupancy prediction results on OpenOccupancy val set. VQ-Occ achieves better performance than all previous methods from all input modalities.

Method	Input	loU	mIoU	barrier	bicycle	bus	car	constr. veh	motorcycle	pedestrian	traffic cone	trailer	truck	driveable	vegetation
MonoScene [3]	C	18.4	6.9	7.1	3.9	9.3	7.2	5.6	3.0	5.9	4.4	4.9	4.2	14.9	6.3
TPVFormer [16]	C	15.3	7.8	9.3	4.1	11.3	10.1	5.2	4.3	5.9	5.3	6.8	6.5	13.6	9.0
C-CONet [31]	C	20.1	12.8	13.2	8.1	15.4	17.2	6.3	11.2	10.0	8.3	4.7	12.1	31.4	18.8
VQ-Occ (Ours)	C	21.5	13.6	14.1	8.8	16.4	18.3	6.8	11.9	10.7	8.9	5.1	12.9	33.2	20.0
LMSCNet [24]	L	27.3	11.5	12.4	4.2	12.8	12.1	6.2	4.7	6.2	6.3	8.8	7.2	24.2	12.3
JS3C-Net [36]	L	30.2	12.5	14.2	3.4	13.6	12.0	7.2	4.3	7.3	6.8	9.2	9.1	27.9	15.3
L-CONet [31]	L	30.9	15.8	17.5	5.2	13.3	18.1	7.8	5.4	9.6	5.6	13.2	13.6	34.9	21.5
PointOcc [41]	L	34.1	23.9	24.9	19.0	20.9	25.7	13.4	25.6	30.6	17.9	16.7	21.2	36.5	25.6
VQ-Occ (Ours)	L	35.3	24.8	25.8	19.8	21.8	26.7	13.9	26.6	31.7	18.7	17.4	22.1	37.8	$\boldsymbol{26.5}$
M-CONet [31]	C&L	29.5	20.1	23.3	13.3	21.2	24.3	15.3	15.9	18.0	13.3	15.3	20.7	33.2	21.0
VQ-Occ (Ours)	C&L	36.8	25.5	26.5	20.5	22.6	27.7	14.4	27.6	$\boldsymbol{32.7}$	19.4	18.1	22.9	39.0	27.5

Table 5: Semantic occupancy prediction results on nuCraft val set at 0.2m resolution.

Method	Input	loU	mIoU	barrier	bicycle	bus c	ar (constr. veh.	motorcycle	pedestrian	traffic con	e trailer	truck	driveable	vegetation
C-CONet [31]	C	20.8	13.4	14.3	9.1	16.5 18	8.3	7.4	12.3	11.1	9.4	5.8	13.2	32.5	19.9
VQ-Occ (Ours)	C	21.9	14.1	15.2	9.9	17.5 19	9.4	8.0	13.0	11.8	10.0	6.2	14.0	34.3	$\boldsymbol{21.1}$
L-CONet [31]	L	31.3	16.5	18.6	6.3	14.4 19	9.2	8.9	6.5	10.7	6.7	14.3	14.7	36.0	22.6
PointOcc [41]	L	34.8	24.6	26.0	20.1	22.0 26	6.8	14.5	27.1	32.1	19.0	17.8	22.3	37.6	26.7
VQ-Occ (Ours)	L	36.1	25.5	26.9	20.9	$22.9\ 27$	7.8	15.0	28.1	33.2	19.8	18.5	23.2	38.9	27.6
M-CONet [31]	C+L	29.9	20.7	24.4	14.4	$22.3 \ 25$	5.4	16.4	17.0	19.1	14.4	16.4	21.8	34.3	22.1
VQ-Occ (Ours)	C+L	37.5	26.2	27.6	21.6	23.7 28	8.8	15.5	$\boldsymbol{29.2}$	34.3	20.5	19.2	24.0	40.1	28.6