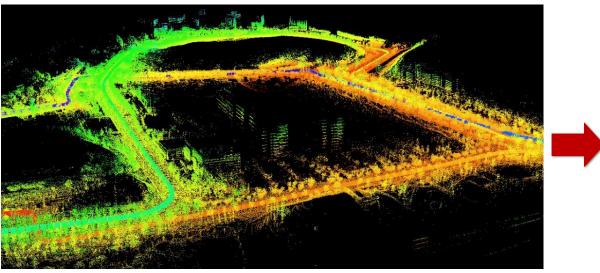
Mask2Map: Vectorized HD Map Construction Using Bird's Eye View Segmentation Masks

Sehwan Choi*, Jungho Kim*, Hongjae Shin, Jun Won Choi⁺

Hanyang University, Seoul National University * Equal contribution, [†]Corresponding Author

Online HD Map Construction

- HD maps are crucial for autonomous driving
- Offline SLAM-based methods are costly and limited in timely updates
- Early approaches used semantic segmentation, which is not suitable for downstream tasks
- Recent works focus on online vectorized HD map construction using vehicle sensor data

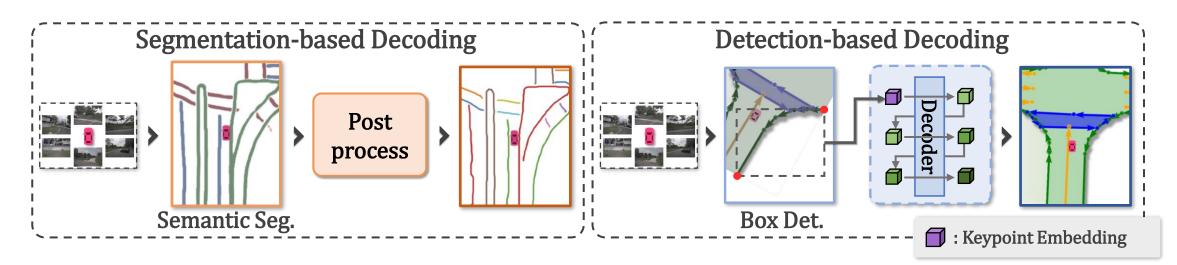


[SLAM-based HD map]

[Online HD map construction]

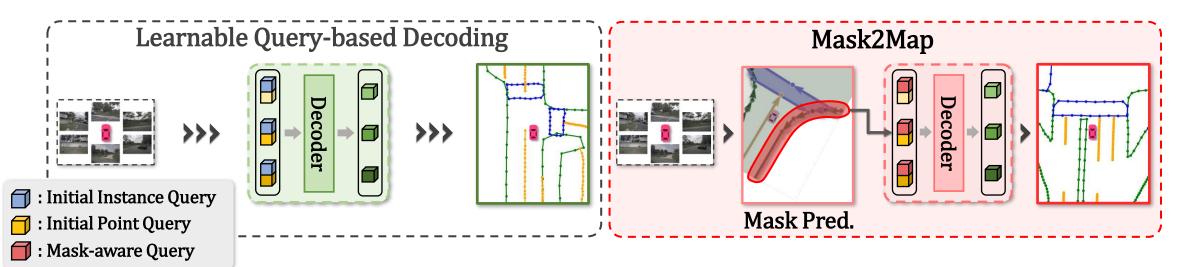
Online HD Map Construction Approaches

- **Segmentation-based:** Require heuristic post-processing, making it time-consuming
- **Detection-based:** Rely only on key points in 2D boxes, limiting the capture of diverse shapes
- Learnable query-based: Fail to capture the semantic and geometric information of map instances in complex scenes
- Mask2Map: Construct the fine-grained map components using semantic features of instances derived from a global perspective



Online HD Map Construction Approaches

- Segmentation-based: Require heuristic post-processing, making it time-consuming
- Detection-based: Rely only on key points in 2D boxes, limiting the capture of diverse shapes
- Learnable query-based: Fail to capture the semantic and geometric information of map instances in complex scenes
- Mask2Map: Construct the fine-grained map components using semantic features of instances derived from a global perspective

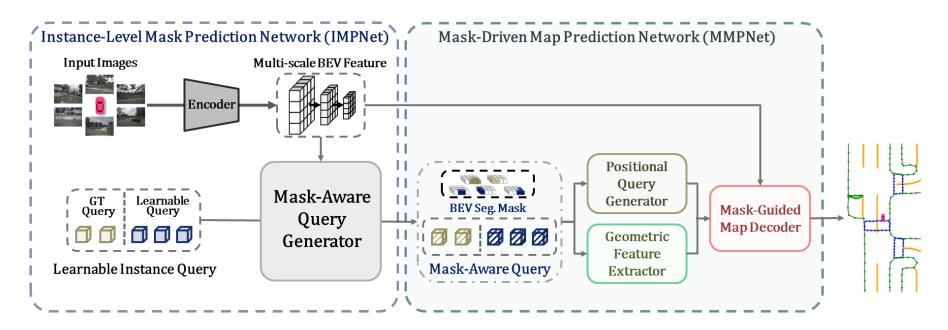


Contribution

- Present Mask2Map, a new framework for online HD map construction
 - Capture semantic information at the instance-level and use it to generate fine-grained map components
- Design a mask-guided hierarchical feature extraction architecture
 - Encode instance-level and point-level features for spatial context and geometric information
- Present an Inter-network Denoising Training strategy that uses noisy GT queries and perturbed GT Segmentation Masks
 - Ensure inter-network consistency between IMPNet and MMPNet

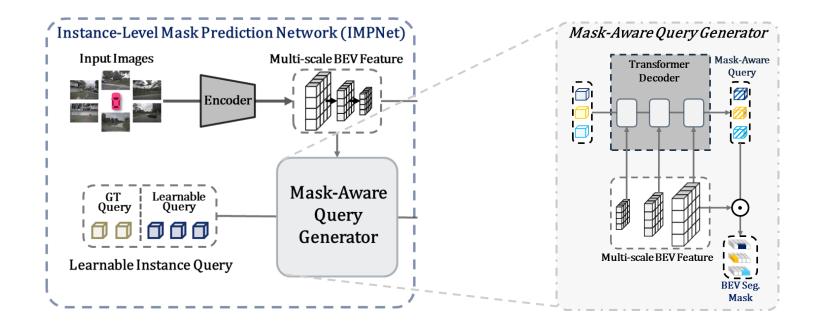
Overall Architecture

- Mask2Map architecture comprises two networks: IMPNet and MMPNet
- Instance-Level Mask Prediction Network (IMPNet)
 - Generate a Mask-Aware Query to capture the semantic features from a global perspective
- Mask-Driven Map Prediction Network (MMPNet)
 - Construct the vectorized HD map components from a local perspective using Mask-Aware Query



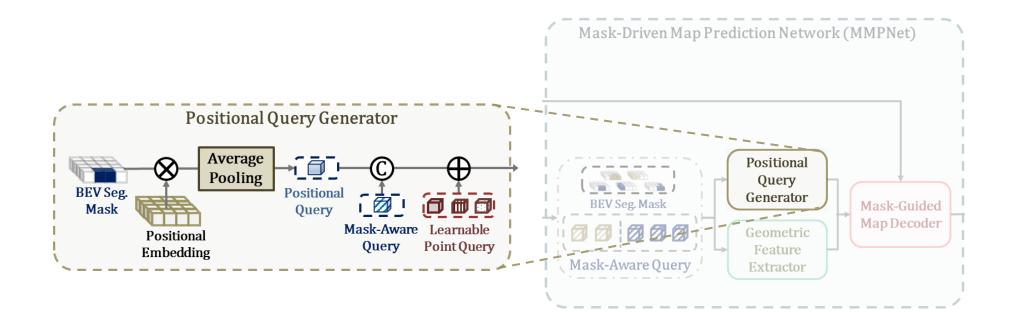
Instance-Level Mask Prediction Network (IMPNet)

- IMPNet extracts multi-scale BEV features from input sensor data
- Mask-Aware Query Generator
 - Employ a Mask Transformer to generate Mask-Aware Queries and predict BEV Seg. Masks



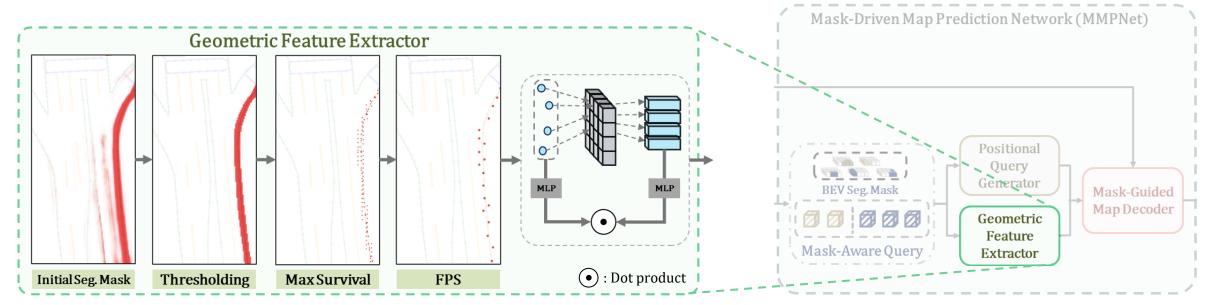
Mask-Driven Map Prediction Network (MMPNet)

- Positional Query Generator (PQG)
 - Generate **Positional Query** by average pooling positional embedding within the BEV Seg. Mask
 - Concatenate the Positional Query and Mask-Aware Query
 - Add the Learnable Point Query to convert the query at point level for generating PQG Queries



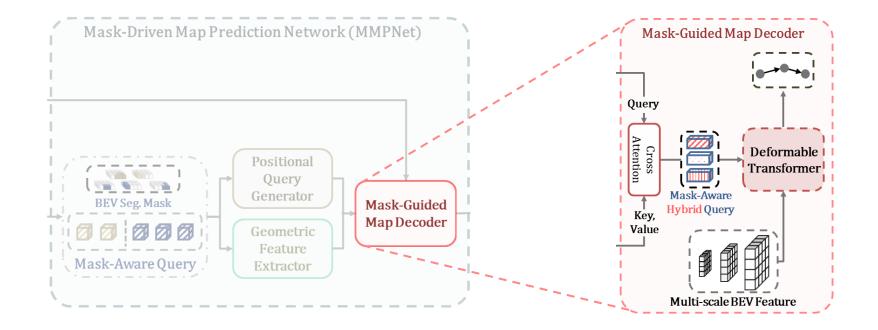
Mask-Driven Map Prediction Network (MMPNet)

- Geometric Feature Extractor (GFE)
 - Generate a sparsified BEV mask from the BEV Segmentation Mask by using a threshold
 - Use the Max Survival method to select the strongest pixel within a sliding window
 - Sample key points using Farthest Point Sampling
 - Produce GFE features using coordinates and BEV features from sampled key points



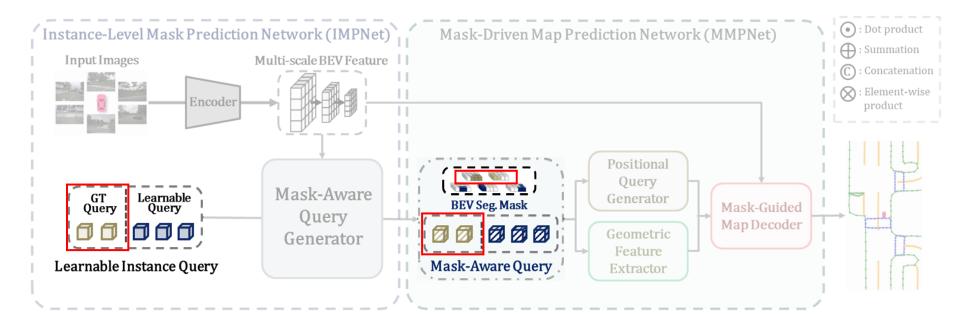
Mask-Driven Map Prediction Network (MMPNet)

- Mask-Guided Map Decoder (MMD)
 - Encode PQG Queries through cross-attention using GFE features as keys and values
 - Predict class scores and normalized BEV coordinates by Deformable Transformer



Inter-network Denoising Training

- Mask2Map passes Mask-Aware Queries from IMPNet to MMPNet
- Inter-network inconsistency occurs when IMPNet and MMPNet queries match different GT instances
- To solve this, we merge noisy GT Queries into learnable queries
 - Our model is trained to denoise GT queries by directly matching them with their corresponding GTs
 - Generate perturbed GT Segmentation Masks alongside GT Queries, replacing BEV Masks for IMPNet



Motivation Method Experiments

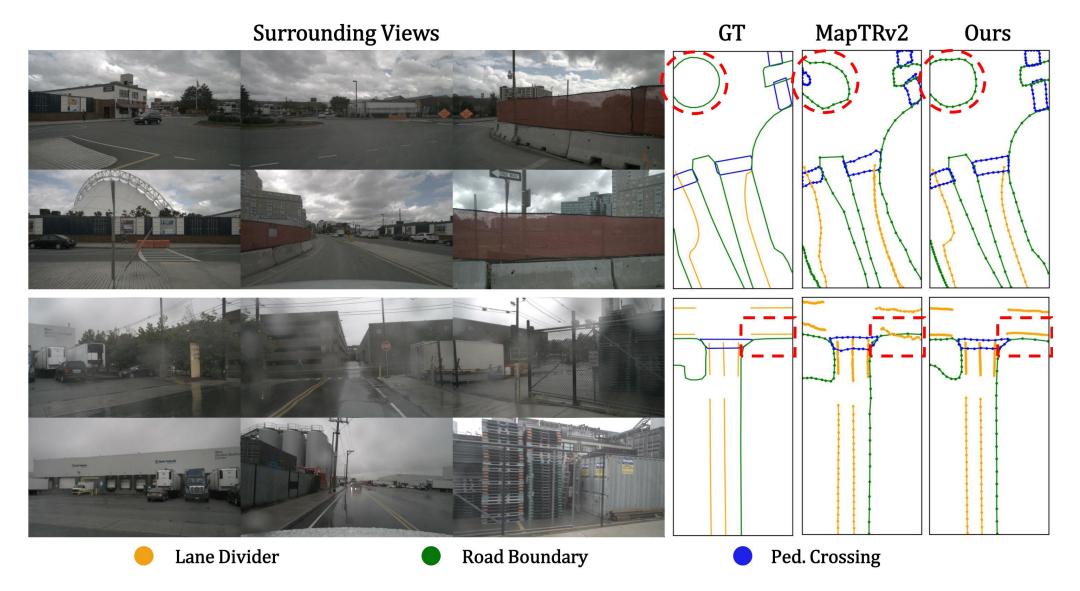
Visualization

Comparison with State-of-the-Art Methods

- *mAP* : Chamfer distance-based mAP
- Mask2Map achieves remarkable performance improvements over previous state-of-the-art methods, with gains of 10.1% mAP and 4.1% mAP on nuScenes and Argoverse2, respectively

Method	AP _{ped}	AP _{divider}	AP _{boundary}	mAP		Method	AP _{ped}	AP _{divider}	AP _{boundary}	mAP
MapVR	47.7	54.4	51.4	51.2		VectorMapNet	38.3	36.1	39.2	37.9
PivotNet	56.2	56.5	60.1	57.6		MapTR	54.7	58.1	56.7	56.5
BeMapNet	57.7	62.3	59.4	59.8		MapVR	54.6	60.0	58.0	57.5
MapTRv2	59.8	62.4	62.4	61.5		MapTRv2	62.9	72.1	67.1	67.4
Ours	70.6	71.3	72.9	71.6	. ,	Ours	68.1	72.7	73.7	71.5
Comparison with SOTA on <i>nuScenes</i> validation set]						[Comparison with SOTA on Argoverse2 validation set]				

Qualitative Results



Thank you

