

Length Aware Motion Synthesis via Latent Diffusion

Alessio Sampieri*, Alessio Palma*, Indro Spinelli, and Fabio Galasso

Sapienza University of Rome, Italy *surname@di.uniroma1.it*

EUROPEAN CONFERENCE ON COMPUTER VISION

MILAN O

* Authors contributed equally

Text-to-motion synthesis is the task of generating human motions that conform to an input textual description w. Applications in virtual reality, animation, videogames, robots-human interaction.

E.g. "A person moves backwards, sits down, then stands back up."

Related Works

- Earlier works (TEMOS, MDM) **directly** leveraged generative models.
- As of today, learning a latent representation and conditional generation are the two building blocks of this task.
- Learning a latent representation: can occur in either a discrete (VQ-VAE) or continuous (VAE) space.
- **Generation:** autoregressive (GPT) or one-shot (latent DDPM).
- RAG methodologies have begun to be included in pipelines more recently.

Discrete tokens yield limited expressive capability.

No control over the length of the produced motion: it just depends on when the *End* token is predicted.

Related Works: MotionGPT

VQ-VAE + GPT

Same limitations as previous model.

Length Aware Motion Synthesis via Latent Diffusion Alessio Sampieri*, Alessio Palma*, Indro Spinelli, and Fabio Galasso

Related Works: MLD

VAE representation is agnostic of the desired output sequence size.

Diffusion-based synthesis does not account for mechanisms which affect the output sequence style depending on the desired length.

- SOTA approaches cannot control the synthesized motion's length or consider the target sequence's variable length as a stylizing attribute.
- Suppose we want to generate a short kick motion: it is **not enough** to subsample a lengthy one, as it will not capture the intricate variations that occur when humans perform actions at different speeds.
- The embedding space should encode longer sequences with **larger** capacity, because they need more details to be generated, and shorter sequences with **less** capacity.

For all these reasons, we introduce "Length-Aware Latent Diffusion" (LADiff)

- **Novel length-aware VAE**, designed to learn motion representations with length-dependent latent codes.
- **Novel length-aware latent DDPM**, which generates motions with a richness of details that increases with the target sequence duration.
- Organize the latent representation space into **subspaces**, which activate progressively with the increasing target sequence length.

LADiff: Overview

-> Reconstruction phase

LADiff: Overview

- **Decompose** the entire latent space into *K* subspaces: the complete space has dimension $R^{K \times D}$, and the smallest subspace is $1 \times D$ -dimensional.
- As the motion length grows, we **stepwise unlock** bigger subspaces following the activation rate $k = \lceil \frac{f}{r} \rceil$, where *f* is the length of the motion, and *r* is the number of frames assigned to each subspace.
- Each motion x will have its own embedding $z \in R^{k \times D}$.

$$q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}|\mu_1(\mathbf{x}), \sigma_1^2(\mathbf{x})\mathbf{I}, \dots, \mu_k(\mathbf{x}), \sigma_k^2(\mathbf{x})\mathbf{I})$$
$$\mathbf{z}^{(i)} = [\boldsymbol{\mu}_1^{(i)} + \boldsymbol{\sigma}_1^{(i)2} \odot \boldsymbol{\rho}_1, \dots, \boldsymbol{\mu}_k^{(i)} + \boldsymbol{\sigma}_k^{(i)2} \odot \boldsymbol{\rho}_k]$$

- **Decompose** the entire latent space into *K* subspaces: the complete space has dimension $R^{K \times D}$, and the smallest subspace is $1 \times D$ -dimensional.
- As the motion length grows, we **stepwise unlock** bigger subspaces following the activation rate $k = \lceil \frac{f}{r} \rceil$, where *f* is the length of the motion, and *r* is the number of frames assigned to each subspace.
- Each motion x will have its own embedding $z \in R^{k \times D}$.
- The transformer-based decoder handles the varying dimensional space by using the **masked attention** mechanism.

• Forward diffusion process gradually converts latent representations $z_0 = z$ into random noise z_T in T timesteps, following:

$$g(\mathbf{z}_t | \mathbf{z}_{t-1}) = \mathcal{N}(\mathbf{z}_t; \sqrt{\bar{\alpha}_t} \mathbf{z}_{t-1}, (1 - \bar{\alpha}_t) \mathbf{I})$$

- The reverse denoising process gradually refines the noised vector to a suitable representation z_0 through $z_{t-1} = \epsilon_{\psi}(z_t, t, \gamma(w))$, with ϵ_{ψ} being a denoising transformer u-net.
- At inference time we **initialize** z_T using our activation rate k derived from the desired motion length f^* :

$$\mathbf{z}_T = \mathcal{N}(\mathbf{0}, \mathbf{I}) \in \mathbb{R}^{\lceil \frac{f^*}{r} \rceil \times D}$$

LADiff: Denoising VAE

- We train VAE and latent DDPM in cascaded stages.
- VAEs aim to reconstruct clean inputs as faithfully as possible. Conversely, latent DDPMs generate latent vectors from pure Gaussian noise.
- DDPM-generated latents may contain some residual noise, which poses challenges for the VAE decoder.
- **DVAE** to align the latent variable distributions: perturb a percentage of input frames with Gaussian noise $\epsilon \sim \mathcal{N}(0,1)$.

Quantitative results: HumanML3D

We evaluate our model on **HumanML3D** (14.6k motion sequences, 44.9k textual descriptions) and KIT-ML.

Methods	R Precision \uparrow			FID	MM_Dist_	$Diversity \rightarrow$	MModality ↑	
Methods	Top 1	Top 2 Top 3		· 11D ↓	MIM-Dist ↓	Diversity ->	minioaditty	
Real	$0.511^{\pm .003}$	$0.703^{\pm .003}$	$0.797^{\pm .002}$	$0.002^{\pm .000}$	$2.974^{\pm.008}$	$9.503^{\pm.065}$	-	
MotionDiffuse [11]	$0.491^{\pm.001}$	$0.681^{\pm.001}$	$0.782^{\pm.001}$	$0.630^{\pm.001}$	$3.113^{\pm.001}$	$9.410^{\pm .049}$	$1.553^{\pm.042}$	
MDM [21]	$0.320^{\pm.005}$	$0.498^{\pm.004}$	$0.611^{\pm.007}$	$0.544^{\pm.044}$	$5.566^{\pm.027}$	$9.559^{\pm.086}$	$2.799^{\pm.072}$	
MLD [9]	$0.481^{\pm.003}$	$0.673^{\pm.003}$	$0.772^{\pm.002}$	$0.473^{\pm.013}$	$3.196^{\pm.010}$	$9.724^{\pm.082}$	$2.413^{\pm.079}$	
T2M-GPT [5]	$0.491^{\pm.003}$	$0.680^{\pm.003}$	$0.775^{\pm.002}$	$0.116^{\pm.004}$	$3.118^{\pm.011}$	$9.761^{\pm.081}$	$1.856^{\pm.011}$	
MotionGPT [6]	$0.492^{\pm.003}$	$0.681^{\pm.003}$	$0.778^{\pm.002}$	$0.232^{\pm.008}$	$3.096^{\pm.008}$	$9.528^{\pm.071}$	$2.008^{\pm.084}$	
Fg-T2M [33]	$0.492^{\pm.002}$	$0.683^{\pm.003}$	$0.783^{\pm.002}$	$0.243^{\pm.019}$	$3.109^{\pm.007}$	$9.278^{\pm .072}$	$1.614^{\pm.049}$	
M2DM [16]	$0.497^{\pm.003}$	$0.682^{\pm.002}$	$0.763^{\pm.003}$	$0.352^{\pm.005}$	$3.134^{\pm.010}$	$9.926^{\pm.073}$	$3.587^{\pm.072}$	
AttT2M [15]	$0.499^{\pm.006}$	$0.690^{\pm.002}$	$0.786^{\pm.002}$	$0.112^{\pm.006}$	$3.038^{\pm.007}$	$9.700^{\pm .090}$	$2.452^{\pm.051}$	
$Ours_{(r=32)}$	$0.493^{\pm.002}$	$0.686^{\pm.002}$	$0.784^{\pm.001}$	$0.110^{\pm .004}$	$3.077^{\pm.010}$	$9.622^{\pm.071}$	$2.095^{\pm.076}$	
$Ours_{(r=48)}$	$0.503^{\pm.002}$	$0.696^{\pm.003}$	$0.792^{\pm.002}$	$0.182^{\pm.004}$	$3.054^{\pm.008}$	$9.795^{\pm.076}$	$2.115^{\pm.063}$	
ReMoDiffuse [23]	$0.510^{\pm .005}$	$0.698^{\pm.006}$	$0.795^{\pm.004}$	$0.103^{\pm.004}$	$2.974^{\pm.016}$	$9.081^{\pm .075}$	$1.795^{\pm.028}$	
$Ours_{(r=48)} RAG$	$0.494^{\pm.002}$	$0.691^{\pm .003}$	$0.786^{\pm.001}$	$0.054^{\pm.002}$	$3.112^{\pm.008}$	$9.517^{\pm.077}$	$2.453^{\pm.074}$	

Quantitative results: KIT-ML

We evaluate our model on HumanML3D and **KIT-ML** (3.9k motions, 6.2k textual descriptions).

Methods	R Precision \uparrow			FID	MM_Dist	$Diversity \rightarrow$	MModality ^
	Top 1	Top 2	Top 3	· 11D ↓	MIM-D180 4	Diversity	minodanty
Real	$0.424^{\pm.005}$	$0.649^{\pm.006}$	$0.779^{\pm.006}$	$0.031^{\pm.004}$	$2.788^{\pm.012}$	$11.08^{\pm.097}$	-
MotionDiffuse [11]	$0.417^{\pm.004}$	$0.621^{\pm.004}$	$0.739^{\pm.004}$	$1.954^{\pm.062}$	$2.958^{\pm.005}$	$11.10^{\pm.143}$	$0.730^{\pm.013}$
MDM [21]	$0.164^{\pm.004}$	$0.291^{\pm .004}$	$0.396^{\pm.004}$	$0.497^{\pm .021}$	$9.191^{\pm.022}$	$10.85^{\pm.109}$	$1.907^{\pm.214}$
MLD [9]	$0.390^{\pm.008}$	$0.609^{\pm.008}$	$0.734^{\pm.007}$	$0.404^{\pm.027}$	$3.204^{\pm.027}$	$10.80^{\pm.117}$	$2.192^{\pm.071}$
T2M-GPT [5]	$0.416^{\pm.006}$	$0.627^{\pm.006}$	$0.745^{\pm.006}$	$0.514^{\pm .029}$	$3.007^{\pm .023}$	$10.92^{\pm.108}$	$1.570^{\pm.039}$
MotionGPT [6]	$0.366^{\pm.005}$	$0.558^{\pm.004}$	$0.680^{\pm.005}$	$0.510^{\pm.016}$	$3.527^{\pm.021}$	$10.35^{\pm.084}$	$2.328^{\pm.117}$
Fg-T2M [33]	$0.418^{\pm .005}$	$0.626^{\pm.006}$	$0.745^{\pm.004}$	$0.571^{\pm .047}$	$3.114^{\pm.015}$	$10.93^{\pm.083}$	$1.019^{\pm .029}$
M2DM [16]	$0.416^{\pm.004}$	$0.628^{\pm.004}$	$0.743^{\pm.004}$	$0.515^{\pm.029}$	$3.015^{\pm.017}$	$11.41^{\pm.097}$	$3.325^{\pm.037}$
AttT2M [15]	$0.413^{\pm.006}$	$0.632^{\pm.006}$	$0.751^{\pm.006}$	$0.870^{\pm.039}$	$3.039^{\pm.021}$	$10.96^{\pm .123}$	$2.281^{\pm.047}$
$Ours_{(r=48)}$	$0.429^{\pm.007}$	$0.647^{\pm.004}$	$0.773^{\pm.004}$	$0.470^{\pm .016}$	$2.831^{\pm.020}$	$11.30^{\pm.108}$	$1.243^{\pm.057}$
ReMoDiffuse [23]	$0.427^{\pm.014}$	$0.641^{\pm .004}$	$0.765^{\pm.055}$	$0.155^{\pm.006}$	$2.814^{\pm.0.12}$	$10.80^{\pm.105}$	$1.239^{\pm.028}$
$Ours_{(r=48)}$ RAG	$0.415^{\pm.006}$	$0.632^{\pm.007}$	$0.758^{\pm.005}$	$0.386^{\pm.003}$	$2.978^{\pm.020}$	$11.20^{\pm.008}$	$1.732^{\pm.066}$

170 frames

† means no control over motion length

Latent Space Representations

Comparison of the learned latent space between our LA-VAE and a standard VAE, using t-SNE dimensionality reduction. We generate ten times sequences of 30, 96, and 144 frames per 3 actions.

LA-VAE

VAE

Latent Space Representations

Comparison of the learned latent space between our LA-VAE and a standard VAE, using t-SNE dimensionality reduction. We generate ten times sequences of 30, 96, and 144 frames per 3 actions.

VAE

LA-VAE

Conclusions

- LADiff introduces novel length-aware models to exploit the length of the target sequence as a given input.
- Sets a new SOTA in R-precision and produces motions that adapt in terms of style and dynamics to the desired length.
- **Organizes** motions in the latent space by separating the action types along the first subspace and then by clustering the lengths on the other available subspaces.
- Code is available at https://github.com/AlessioSam/LADiff.

Thank you for your attention!

Extra: Motion dynamics

- For MLD, the averages of acceleration and velocity remain unchanged as the generated length varies.
- By contrast, for LADiff the statistics increase by 44.4% and 17.3% respectively when the motion is shorter. We confirm therefore that LADiff produces **different motion styles for different lengths**.
- We also repeat the same analysis on a set of atomic actions.

	Avg. Vel. (m/s)		Avg.	Acc. (m/s^2)	Max Acc. (m/s^2)		
	84	170	84	170	84	170	
MLD	0.39	0.39	0.06	0.05	0.31	0.33	
LADiff	0.61	0.52	0.13	0.09	0.61	0.55	

	Avg. Vel. (m/s)			Avg. Acc. (m/s^2)			Max Acc. (m/s^2)		
Actions	48	84	170	48	84	170	48	84	170
Sit	0.27	0.17	0.10	0.05	0.04	0.02	0.16	0.16	0.14
Walk	1.31	1.01	0.72	0.11	0.09	0.06	0.19	0.18	0.14
Throw	0.16	0.15	0.13	0.04	0.04	0.03	0.14	0.15	0.13
Mean	0.58	0.44	0.31	0.06	0.05	0.03	0.16	0.16	0.14

Extra: Pose vector

The goal of motion synthesis is to generate a motion x based on textual input w. We define motion as a sequence of poses $x = [x_1, ..., x_F] \in R^{F \times V}$ and textual description as a vector $w \in R^{1 \times D}$.

A pose vector $x_i \in R^{1 \times V}$ in our work is defined by a tuple:

 $\left(\dot{r^a},\dot{r^x},\dot{r^z},r^y,j^p,j^v,j^r,c^f\right)$

containing root angular velocity, root linear velocities, root height, joints positions, velocities, rotations and heel-toe joint velocities.

Motions in the HumanML3D dataset follow the skeleton structure of SMPL with 22 joints. Poses have 21 joints in KIT-ML.

Extra: Reconstruction results

Here we present the results of our proposed length-aware VAE for the **reconstruction** phase on HumanML3D. **MPJPE** is defined as the mean Euclidean distance between the predicted 3D joint locations and the corresponding ground truth joint locations.

	$\mathrm{MPJPE}\downarrow$	R Prec. Top 3 \uparrow	FID \downarrow	MM-Dist \downarrow	Diversity \rightarrow
Real	0.0	0.797	0.002	2.974	9.503
MLD [9]	<u>54.4</u>	0.772	0.247	3.101	9.630
T2M-GPT [5]		0.785	0.070	3.072	9.593
MotionGPT [6]	55.8		0.067		9.675
M2DM [16]		<u>0.791</u>	<u>0.063</u>	<u>3.015</u>	9.577
$Ours_{(r=48)}$ w/o DVAE	53.2	0.792	0.048	3.002	9.643
$Ours_{(r=48)}$	52.6	0.797	0.054	2.993	9.613

- **R-precision**: for each generated motion, its ground-truth text description and 31 randomly selected mismatched descriptions from the test set form a description pool. Following, calculate and rank the Euclidean distances between the motion feature and each text feature in the pool. We then count the average accuracy at top-1, top-2 and top-3 places.
- **MM-Dist**: the average Euclidean distance between the motion feature of each generated motion and the text feature of its corresponding description.
- **FID**: measures the similarity between the distributions of generated and real motions. It is computed by measuring the L2 loss of the latent representations obtained through the feature extractor.

• **Diversity**: randomly divide the motion feature vectors into two equalsized subsets $\{x_1, ..., x_{X_d}\}$ and $\{x'_1, ..., x'_{X_d}\}$, then compute Diversity as follows:

$$\frac{1}{X_d} \sum_{i=1}^{X_d} ||x_i - x_i'||$$

• **MultiModality**: randomly select T_d text descriptions from the entire collection, then for each *t*-th description generate two subsets of motions $\{x_{t,1}, ..., x_{t,X_d}\}$ and $\{x'_{t,1}, ..., x'_{t,X_d}\}$ of size X_d . MultiModality is then computed as:

$$\frac{1}{T_d \cdot X_d} \sum_{t=1}^{T_d} \sum_{i=1}^{X_d} ||x_{t,i} - x'_{t,i}||$$