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Text-to-motion synthesis is the task of generating human motions that

conform to an input textual description 𝑤. Applications in virtual reality,

animation, videogames, robots-human interaction.
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The task

E.g. “A person moves backwards, sits down, then stands back up.”
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• Earlier works (TEMOS, MDM) directly leveraged generative models.

• As of today, learning a latent representation and conditional

generation are the two building blocks of this task.

• Learning a latent representation: can occur in either a discrete (VQ-

VAE) or continuous (VAE) space.

• Generation: autoregressive (GPT) or one-shot (latent DDPM).

• RAG methodologies have begun to be included in pipelines more

recently.
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Related Works

VQ-VAE + GPT
Discrete

VAE + DDPM
Continuous
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Related Works: T2M-GPT

VQ-VAE + GPT

Discrete tokens yield limited expressive capability.

No control over the length of the produced motion: it just 

depends on when the End token is predicted.
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Related Works: MotionGPT

VQ-VAE + GPT

Same limitations as previous model.
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Related Works: MLD

VAE representation is agnostic of the 

desired output sequence size. 

Diffusion-based synthesis does not 

account for mechanisms which affect 

the output sequence style depending on 

the desired length.

VAE + DDPM
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Our idea

• SOTA approaches cannot control the synthesized motion’s length or

consider the target sequence’s variable length as a stylizing attribute.

• Suppose we want to generate a short kick motion: it is not enough to

subsample a lengthy one, as it will not capture the intricate variations

that occur when humans perform actions at different speeds.

• The embedding space should encode longer sequences with larger

capacity, because they need more details to be generated, and

shorter sequences with less capacity.

For all these reasons, we introduce “Length-Aware Latent Diffusion”

(LADiff)
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LADiff: contributions

• Novel length-aware VAE, designed to learn motion representations

with length-dependent latent codes.

• Novel length-aware latent DDPM, which generates motions with a

richness of details that increases with the target sequence duration.

• Organize the latent representation space into subspaces, which

activate progressively with the increasing target sequence length.
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LADiff: Overview 
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LADiff: Overview 
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LADiff: Length-Aware VAE

• Decompose the entire latent space into 𝐾 subspaces: the complete

space has dimension 𝑅𝐾×𝐷 , and the smallest subspace is 1 × 𝐷-

dimensional.

• As the motion length grows, we stepwise unlock bigger subspaces

following the activation rate 𝑘 = ⌈
𝑓

𝑟
⌉, where 𝑓 is the length of the

motion, and 𝑟 is the number of frames assigned to each subspace.

• Each motion 𝒙 will have its own embedding 𝒛 ∈ 𝑅𝑘×𝐷.
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LADiff: Length-Aware VAE

• Decompose the entire latent space into 𝐾 subspaces: the complete

space has dimension 𝑅𝐾×𝐷 , and the smallest subspace is 1 × 𝐷-

dimensional.

• As the motion length grows, we stepwise unlock bigger subspaces

following the activation rate 𝑘 = ⌈
𝑓

𝑟
⌉, where 𝑓 is the length of the

motion, and 𝑟 is the number of frames assigned to each subspace.

• Each motion 𝒙 will have its own embedding 𝒛 ∈ 𝑅𝑘×𝐷.

• The transformer-based decoder handles the varying dimensional

space by using the masked attention mechanism.
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LADiff: Length-Aware DDPM

• Forward diffusion process gradually converts latent representations

𝒛0 = 𝒛 into random noise 𝒛𝑇 in 𝑇 timesteps, following:

• The reverse denoising process gradually refines the noised vector to

a suitable representation 𝒛0 through 𝒛𝑡−1 = ϵψ 𝒛𝑡 , 𝑡, γ 𝑤 , with ϵψ
being a denoising transformer u-net.

• At inference time we initialize 𝒛𝑇 using our activation rate 𝑘 derived

from the desired motion length 𝑓∗:
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LADiff: Denoising VAE

• We train VAE and latent DDPM in cascaded stages.

• VAEs aim to reconstruct clean inputs as faithfully as possible.

Conversely, latent DDPMs generate latent vectors from pure

Gaussian noise.

• DDPM-generated latents may contain some residual noise, which

poses challenges for the VAE decoder.

• DVAE to align the latent variable distributions: perturb a percentage of

input frames with Gaussian noise ϵ ∼ 𝒩 0,1 .
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Quantitative results: HumanML3D

We evaluate our model on HumanML3D (14.6k motion sequences, 44.9k

textual descriptions) and KIT-ML.
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Quantitative results: KIT-ML

We evaluate our model on HumanML3D and KIT-ML (3.9k motions, 6.2k

textual descriptions).
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Qualitative results: SOTA comparison

LADiff MLD T2M-GPT MotionGPT
†

means no control over motion length

84 

frames

170 

frames

†

†

“A person walks in a complete circle and then sits down.”
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48 frames 84 frames 170 frames

“A person has to crawl 

under an obstacle to 

continue.”

19

“A person stepping 

over something.”

130 frames 200 frames

Qualitative results: length comparison
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Latent Space Representations

Comparison of the learned latent space between our LA-VAE and a

standard VAE, using t-SNE dimensionality reduction. We generate ten

times sequences of 30, 96, and 144 frames per 3 actions.

LA-VAE VAE

Motion length:

30

96

144

Light

Mid

Dark
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Latent Space Representations

Comparison of the learned latent space between our LA-VAE and a

standard VAE, using t-SNE dimensionality reduction. We generate ten

times sequences of 30, 96, and 144 frames per 3 actions.

LA-VAE VAE

Motion length:

30

96

144

Light

Mid

Dark

Here embeddings 

are organized in 

clustered spaces 

based on action 

and motion length.
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Conclusions

• LADiff introduces novel length-aware models to exploit the length of

the target sequence as a given input.

• Sets a new SOTA in R-precision and produces motions that adapt in

terms of style and dynamics to the desired length.

• Organizes motions in the latent space by separating the action types

along the first subspace and then by clustering the lengths on the

other available subspaces.

• Code is available at https://github.com/AlessioSam/LADiff.

https://github.com/AlessioSam/LADiff
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Thank you for your attention!
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Extra: Motion dynamics

• For MLD, the averages of acceleration and velocity remain

unchanged as the generated length varies.

• By contrast, for LADiff the statistics increase by 44.4% and 17.3%

respectively when the motion is shorter. We confirm therefore that

LADiff produces different motion styles for different lengths.

• We also repeat the same analysis on a set of atomic actions.
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Extra: Pose vector 

The goal of motion synthesis is to generate a motion 𝒙 based on textual

input 𝑤. We define motion as a sequence of poses 𝒙 = 𝑥1, . . , 𝑥𝐹 ∈

𝑅𝐹×𝑉 and textual description as a vector 𝑤 ∈ 𝑅1×𝐷.

A pose vector 𝑥𝑖 ∈ 𝑅1×𝑉 in our work is defined by a tuple:

containing root angular velocity, root linear velocities, root height, joints

positions, velocities, rotations and heel-toe joint velocities.

Motions in the HumanML3D dataset follow the skeleton structure of

SMPL with 22 joints. Poses have 21 joints in KIT-ML.

ሶ𝑟𝑎 , ሶ𝑟𝑥 , ሶ𝑟𝑧, 𝑟𝑦, 𝑗𝑝, 𝑗𝑣, 𝑗𝑟 , 𝑐𝑓
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Extra: Reconstruction results 

Here we present the results of our proposed length-aware VAE for the

reconstruction phase on HumanML3D. MPJPE is defined as the mean

Euclidean distance between the predicted 3D joint locations and the

corresponding ground truth joint locations.
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Extra: Metrics (1) 

• R-precision: for each generated motion, its ground-truth text

description and 31 randomly selected mismatched descriptions from

the test set form a description pool. Following, calculate and rank the

Euclidean distances between the motion feature and each text feature

in the pool. We then count the average accuracy at top-1, top-2 and

top-3 places.

• MM-Dist: the average Euclidean distance between the motion feature

of each generated motion and the text feature of its corresponding

description.

• FID: measures the similarity between the distributions of generated

and real motions. It is computed by measuring the L2 loss of the latent

representations obtained through the feature extractor.
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Extra: Metrics (2) 

• Diversity: randomly divide the motion feature vectors into two equal-

sized subsets {𝑥1, … , 𝑥𝑋𝑑} and {𝑥1
′ , … , 𝑥𝑋𝑑

′ }, then compute Diversity as

follows:

• MultiModality: randomly select 𝑇𝑑 text descriptions from the entire

collection, then for each 𝑡-th description generate two subsets of

motions {𝑥𝑡,1, … , 𝑥𝑡,𝑋𝑑} and {𝑥𝑡,1
′ , … , 𝑥𝑡,𝑋𝑑

′ } of size 𝑋𝑑. MultiModality is

then computed as:
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