

# Thinking Outside the BBox: Unconstrained Generative Object Compositing

Gemma Canet Tarrés<sup>1</sup>, Zhe Lin<sup>2</sup>, Zhifei Zhang<sup>2</sup>, Jianming Zhang<sup>2</sup>, Yizhi Song<sup>3</sup>, Dan Ruta<sup>1</sup>, Andrew Gilbert<sup>1</sup>, John Collomosse<sup>1,2</sup>, Soo Ye Kim<sup>2</sup>

<sup>1</sup> University of Surrey, <sup>2</sup> Adobe Research, <sup>3</sup> Purdue University

# **Object Compositing**



Background Image

Object

# **Object Compositing**



Background Image

Object



#### Generated Composite Image

## **Motivation**

Recent Generative Compositing Methods **require a mask** as input, defining the region of generation.



**ObjectStitch** (mask-based SoTA model)



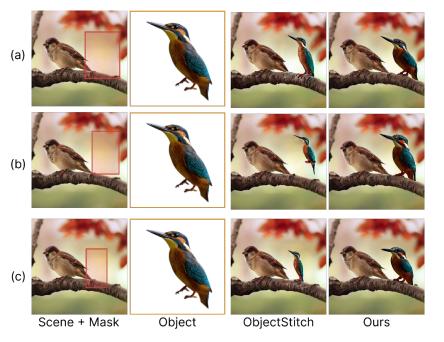
# **Motivation**

Recent Generative Compositing Methods **require a mask** as input, defining the region of generation. This leads to several limitations:

# **Motivation**

Recent Generative Compositing Methods **require a mask** as input, defining the region of generation. This leads to several limitations:

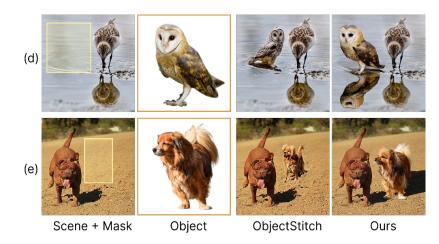
- Drawing an **accurate mask** can be non-trivial, leading to unnatural composite images.



# **Motivation**

Recent Generative Compositing Methods **require a mask** as input, defining the region of generation. This leads to several limitations:

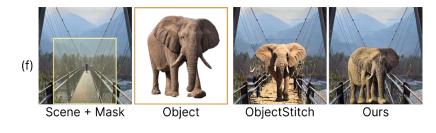
- Drawing an accurate mask can be non-trivial, leading to unnatural composite images.
- It limits the ability to synthesize appropriate object effects (i.e. long shadows, reflections).



# **Motivation**

Recent Generative Compositing Methods **require a mask** as input, defining the region of generation. This leads to several limitations:

- Drawing an **accurate mask** can be non-trivial, leading to unnatural composite images.
- It limits the ability to synthesize appropriate **object effects** (i.e. long shadows, reflections).
- **Background areas** around the object tend to be inconsistent with the original background.



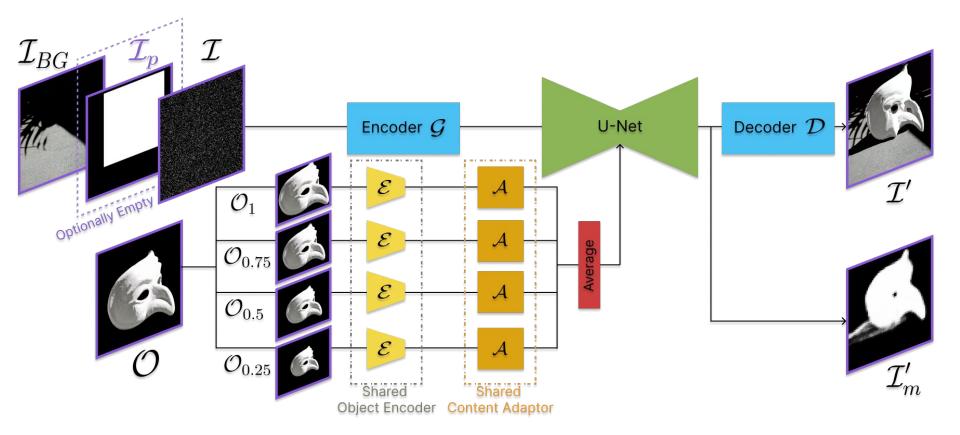
# **Motivation**

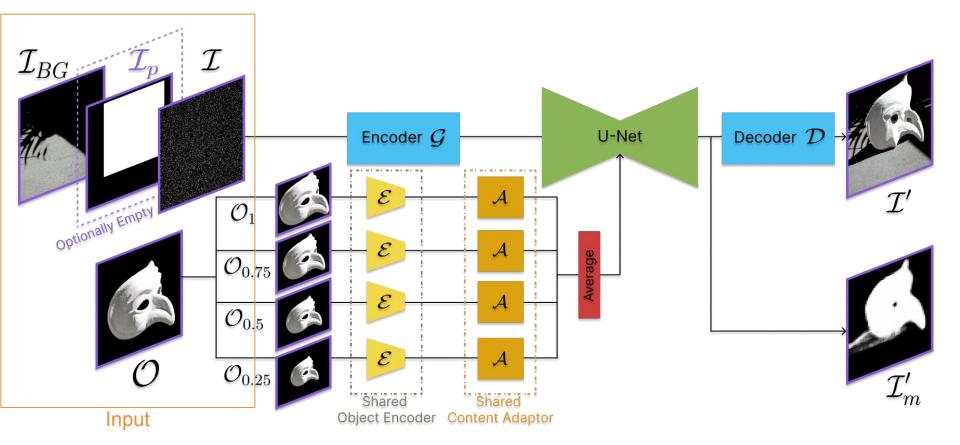
Recent Generative Compositing Methods **require a mask** as input, defining the region of generation. This leads to several limitations:

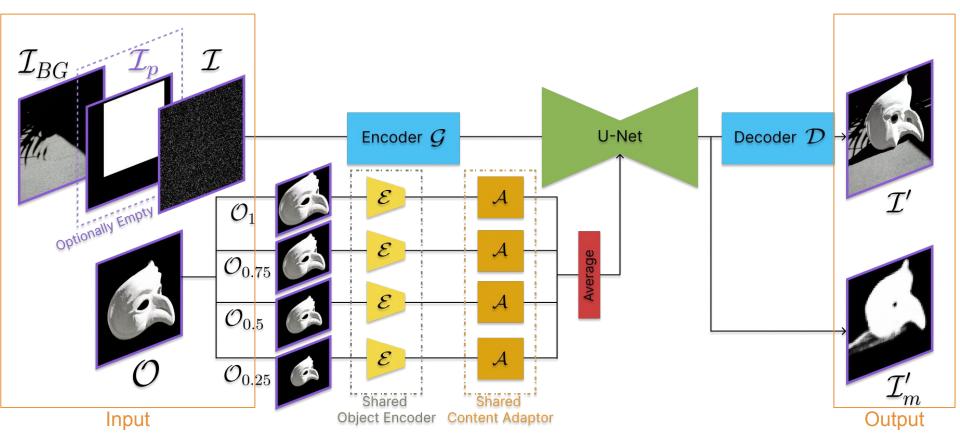
- Drawing an **accurate mask** can be non-trivial, leading to unnatural composite images.
- It limits the ability to synthesize appropriate object effects (i.e. long shadows, reflections).
- **Background areas** around the object tend to be inconsistent with the original background.

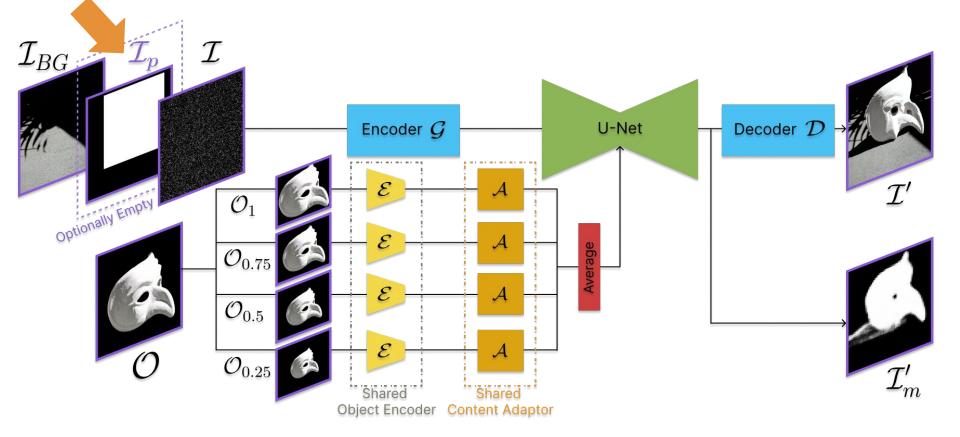
We propose:

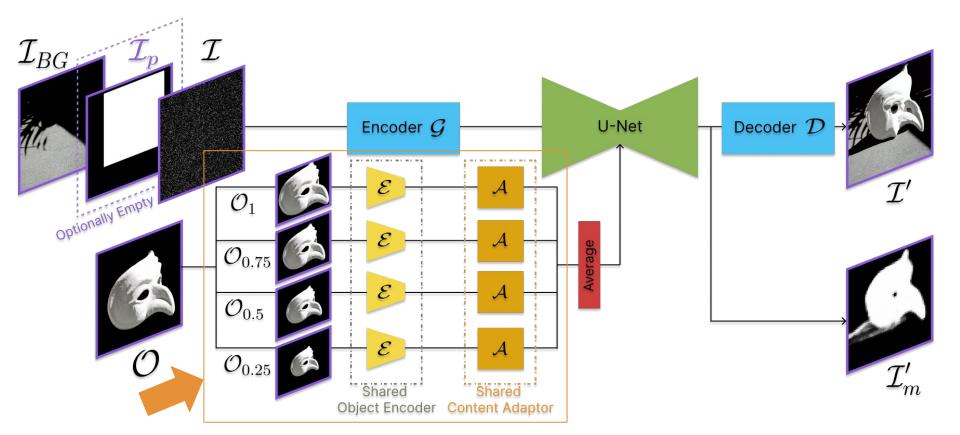
- Introduce novel task: "Unconstrained Image Compositing"
- **Diffusion model** for unconstrained image compositing, trained on synthesized paired data



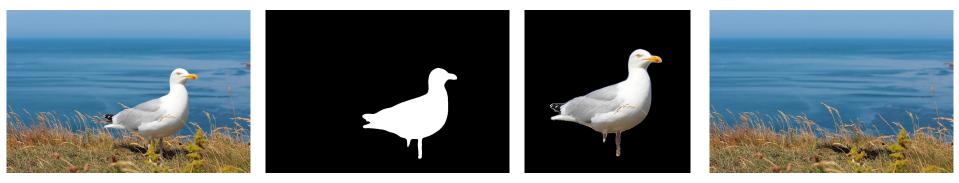








# **Data Generation Pipeline**



GT image

Mask

Object

Background

# Mask-free: Creative Composite Image Recommendation



If an **empty mask** is provided, our model is able to automatically place the object in natural locations and scales in the image. These diverse composite images can be used as creative recommendations for the user.

- 1) Can adjust any **misaligned bounding box**.
- 2) More natural object effects (i.e. **shadows and reflections**) beyond the bounding box.
- 3) Better **background** preservation.



- 1) Can adjust any **misaligned bounding box**.
- 2) More natural object effects (i.e. **shadows and reflections**) beyond the bounding box.
- 3) Better **background** preservation.



- 1) Can adjust any **misaligned bounding box**.
- 2) More natural object effects (i.e. **shadows and reflections**) beyond the bounding box.
- 3) Better **background** preservation.



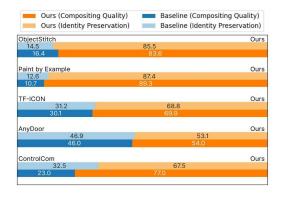
- 1) Can adjust any **misaligned bounding box**.
- 2) More natural object effects (i.e. **shadows and reflections**) beyond the bounding box.
- 3) Better **background** preservation.



# **Additional Experiments**

| Method                           | DreamBooth |            |           |        | Pixabay-Comp                                    |             |          |  |  |  |
|----------------------------------|------------|------------|-----------|--------|-------------------------------------------------|-------------|----------|--|--|--|
|                                  | CLIP-Score | DINO-Score | DreamSim↓ | FID↓   | $\mathbf{CLIP}\operatorname{-Score}^{\uparrow}$ | DINO-Score† | DreamSim |  |  |  |
| ObjectStitch <sup>†</sup> [50]   | 78.018     | 85.247     | 0.342     | 70.111 | 74.964                                          | 77.506      | 0.488    |  |  |  |
| PaintByExample <sup>†</sup> [62] | 77.782     | 79.887     | 0.438     | 82.923 | 76.604                                          | 75.707      | 0.515    |  |  |  |
| TF-ICON* [36]                    | 79.094     | 81.781     | 0.341     | 77.368 | 75.694                                          | 77.810      | 0.485    |  |  |  |
| AnyDoor <sup>‡</sup> [9]         | 80.619     | 83.632     | 0.272     | 72.996 | 80.284                                          | 80.829      | 0.399    |  |  |  |
| ControlCom <sup>\$</sup> [68]    | 74.312     | 70.497     | 0.424     | 66.071 | 72.006                                          | 67.476      | 0.614    |  |  |  |
| Ours (w/ bbox)                   | 80.946     | 85.646     | 0.285     | 62.406 | 77.129                                          | 80.896      | 0.395    |  |  |  |

**Table 1:** Quantitative comparison of composition quality and identity preservation. FID is only computed on Pixabay-Comp, which has ground truth images. <sup>†</sup>: Model finetuned on the same data as Ours. <sup>‡</sup>: Paper version, already includes diverse video and multiview data. <sup>\*</sup>: Paper version, inference-based model that does not require training. <sup>\$</sup>: Paper version, no available training code.





|            | -                                                                                      |        |          |                              |              |                     |          |           | Bad — Neutral | Good     |      |      |
|------------|----------------------------------------------------------------------------------------|--------|----------|------------------------------|--------------|---------------------|----------|-----------|---------------|----------|------|------|
|            |                                                                                        | OPA    |          |                              | Pixabay-Comp |                     |          |           | TopNet        |          |      |      |
| Comparison | Method                                                                                 | SimOPA | † LPIPS† | $\mathrm{IoU} > 0.5\uparrow$ | mean-IoU     | $IoU > 0.5\uparrow$ | mean-IoU | † LPIPS↑  | 41.3          | GracoNet | .2   | 23.5 |
| to SoTA    | TopNet [74]                                                                            | 0.256  | 2.758    | 16.8~%                       | 0.094        | $48.0 \ \%$         | 0.246    | 1.218     | 49.6          | Graconet | 39.8 | 10.6 |
|            | GracoNet [73]                                                                          | 0.395  | 0.836    | 12.2~%                       | 0.189        | 30.2~%              | 0.327    | 2.832     |               | PlaceNet |      |      |
| Object     | PlaceNet [69]                                                                          | 0.197  | 0.746    | 11.2~%                       | 0.194        | 8.6 %               | 0.237    | 2.072     | 50.8          |          | 39.5 | 9.7  |
| Placement  | TERSE [53]                                                                             | 0.319  | 0.000    | 10.8~%                       | 0.123        | 12.2~%              | 0.230    | 0.000     |               | TERSE    |      |      |
| Prediction | Ours (w/o bbox)                                                                        | 0.382  | 5.619    | 31.4 %                       | 0.196        | 65.4~%              | 0.562    | 3.158     | 47.6          |          | 40.2 | 12.2 |
|            | Table 2: Quantitative evaluation of predicted location and scale of our model compared |        |          |                              |              |                     |          | 18.9 19.3 | Ours          | 61.8     |      |      |

to state-of-the-art object placement prediction models. LPIPS is  $\times 10^{-3}$ .



Thinking Outside the BBox: Unconstrained Generative Object Compositing

Project Page: https://gemmact.github.io/outsidethebbox/ Arxiv: https://arxiv.org/abs/2409.04559 e-mail: g.canettarres@surrey.ac.uk Poster Session: Friday 10.30am