

# **ControlNet++: Improving Conditional Controls** with Efficient Consistency Feedback

Ming Li<sup>1</sup>, Taojiannan Yang<sup>1</sup>, Huafeng Kuang<sup>2</sup>, Jie Wu<sup>2</sup>, Zhaoning Wang<sup>1</sup>, Xuefeng Xiao<sup>2</sup>, and Chen Chen<sup>1</sup>

<sup>1</sup>University of Central Florida, <sup>2</sup>TikTok, ByteDance Inc

https://liming-ai.github.io/ControlNet\_Plus\_Plus



### **ECCV 2024**

## Outline

### **Background: Generative Learning for Images**

- Motivation: Do existing methods achieve good controllability?
- Method: Efficient Consistency Feedback

### Experiments: Better Controllability Without Loss of Image Quality and Text Guidance

## **Deep Generative Learning for Image**

### Learning to generate data





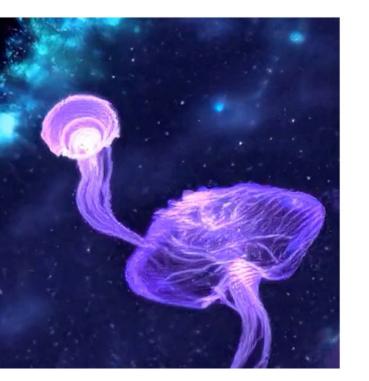
Samples from a Data Distribution

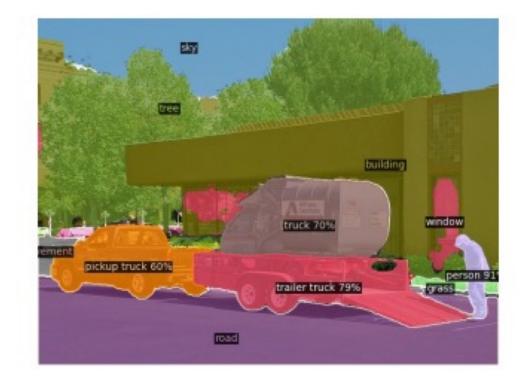
### Application

Art & Design



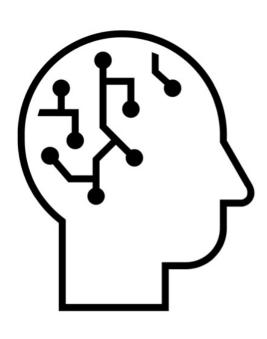
### **Content Generation**





Denoising Diffusion Models: A Generative Learning Big Bang, CVPR 2023 Tutorial





Neural Network





### **Representation Learning**

### Entertainment



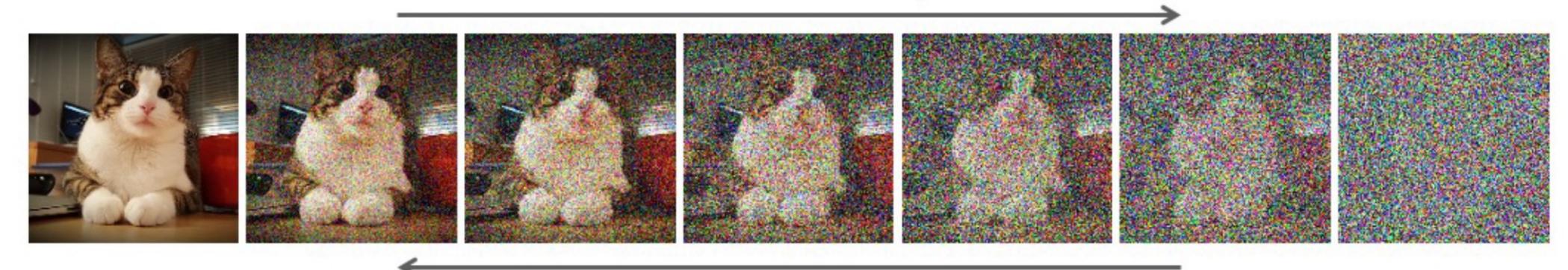
## **Diffusion Model**

Data

**Diffusion models consist of two processes:** 

- Forward diffusion process that gradually adds noise to input •
- Reverse denoising process that learns to generate data by denoising  $\bullet$

### Fixed forward diffusion process



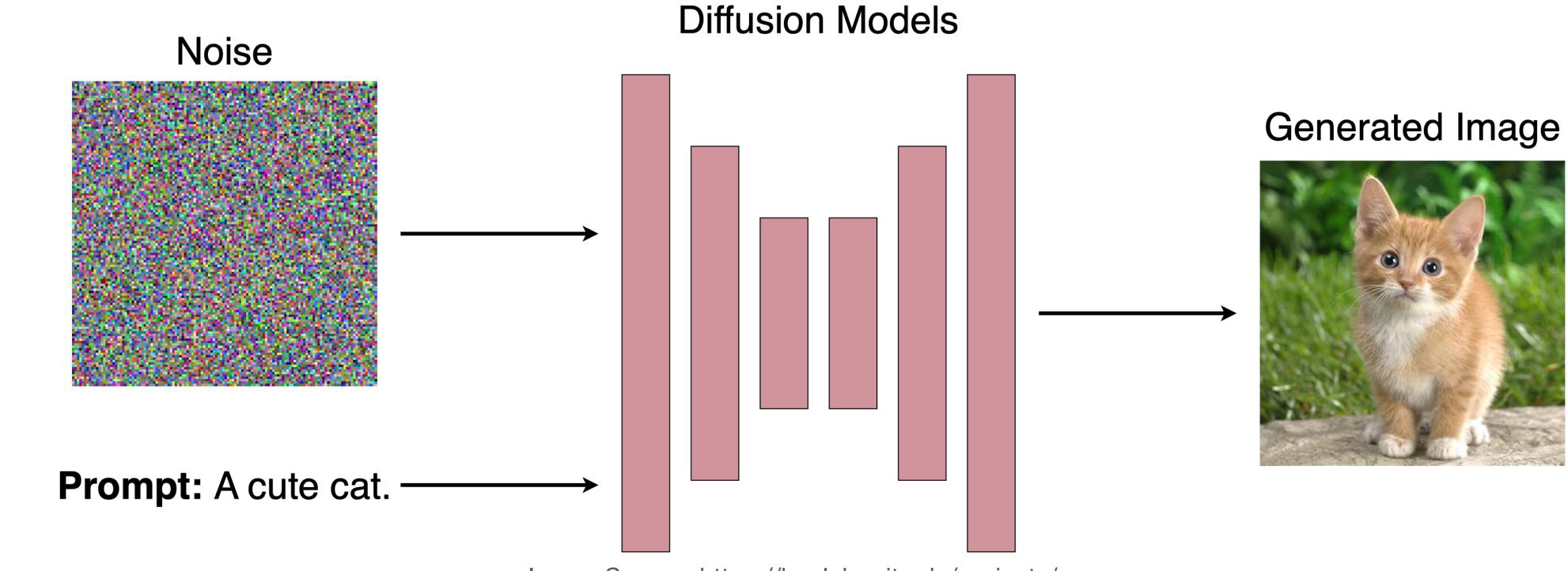
Denoising Diffusion Models: A Generative Learning Big Bang, CVPR 2023 Tutorial

### Generative reverse denoising process



## **Text-to-Image Diffusion Models**

- Adding control over image generation is crucial for the practical application.  $\bullet$
- lacksquareperform image generation with given text prompt as control signals.



Thanks to large-scale text-image datasets, existing diffusion models are well trained to

Image Source: https://hanlab.mit.edu/projects/can

High-Resolution Image Synthesis with Latent Diffusion Models (Stable Diffusion), CVPR 2022



# **Control Image Generation with Text is <u>NOT</u> Enough**



### **Overall content**

The image depicts a majestic deer standing on a grassy and slightly elevated terrain. The deer has a robust body and carries an impressive set of antlers. The background features a misty, mountainous landscape, adding a sense of depth and natural beauty to the scene. The overall ambiance of the image evokes a sense of tranquility and the beauty of wildlife in its natural habitat.

**Object properties 1.Deer**: A large, robust deer with an impressive set of antlers, standing on a grassy and slightly elevated terrain. **2.Terrain**: The ground is covered with grass and small shrubs, typical of a natural, hilly landscape. **3.Background**: The background consists of misty mountains, adding depth and a sense of wilderness to the scene.

### It's hard to describe:

**ControlNet++: Improving Conditional Controls with Efficient Consistency Feedback, ECCV 2024** 

### An image is worth a thousand words. It's hard to describe an image with language.

### How is the aesthetic of this image?

What the details, textures, and contours of the image look like? What the location, pose, material, quantity, and size of each object?

# **Control Image Generation with Text is <u>NOT</u> Enough**



DALL-E 3



SDXL



**Prompt**: a black dog sitting between a bush and a pair of green pants standing up with nobody inside them House

SDXL

DALL-E 3



Even with very detailed text descriptions, existing text-to-image diffusion models still cannot achieve controllable generation based on the given text control signals.

DALL-E 3

**Prompt:** a spaceship that looks like the Sydney Opera

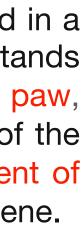
SDXL

DALL-E 3



**Prompt**: a panda bear with aviator glasses on its head

**Prompt**: An intricately detailed oil painting depicts a raccoon dressed in a black suit with a crisp white shirt and a red bow tie. The raccoon stands upright, donning a black top hat and gripping a wooden cane in one paw, while the other paw clutches a dark garbage bag. The background of the painting features soft, brush-stroked trees and mountains, reminiscent of traditional Chinese landscapes, with a delicate mist enveloping the scene.

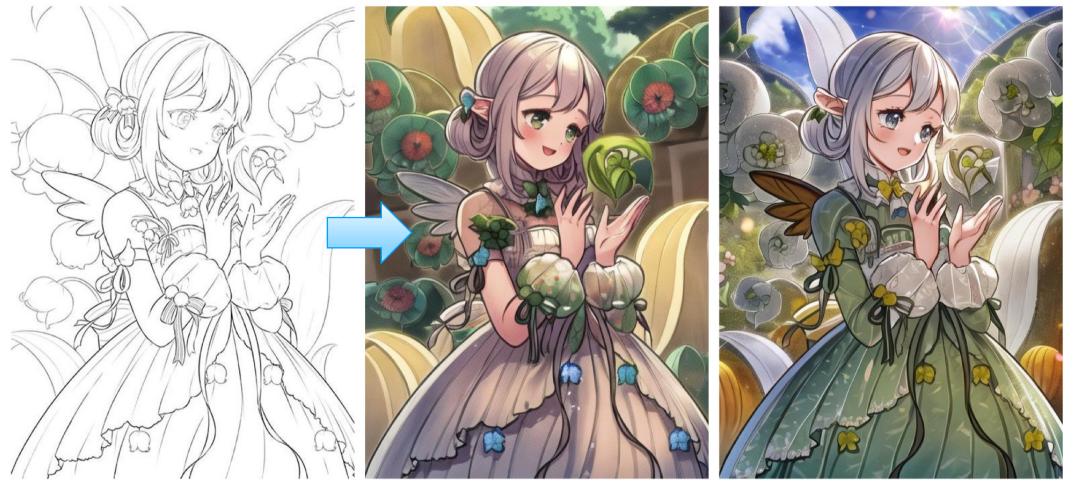


# **Adding Image Controls Signals for Image Generation**



Normal map

"Yharnam, the fictional city comes from a 2015 video game"



Cartoon line drawing

"1girl, masterpiece, best quality, ultra-detailed, illustration"

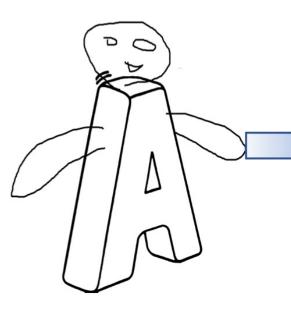
Adding Conditional Control to Text-to-Image Diffusion Models, ICCV 2023 Best Paper T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models, AAAI 2024

"A car with flying wings "



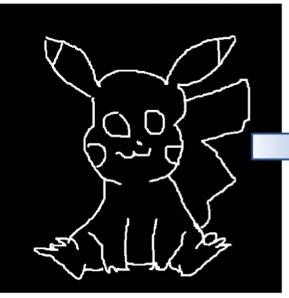
"A Minecraft Pikachu"

### "A doll in the shape of letter 'A' "





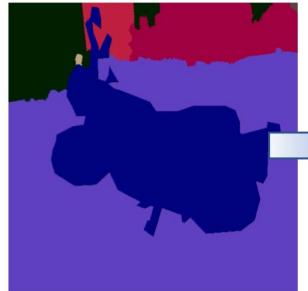
"A black Honda motorcycle"





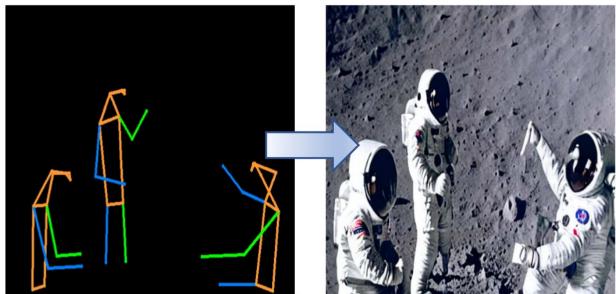
"A beautiful girl"





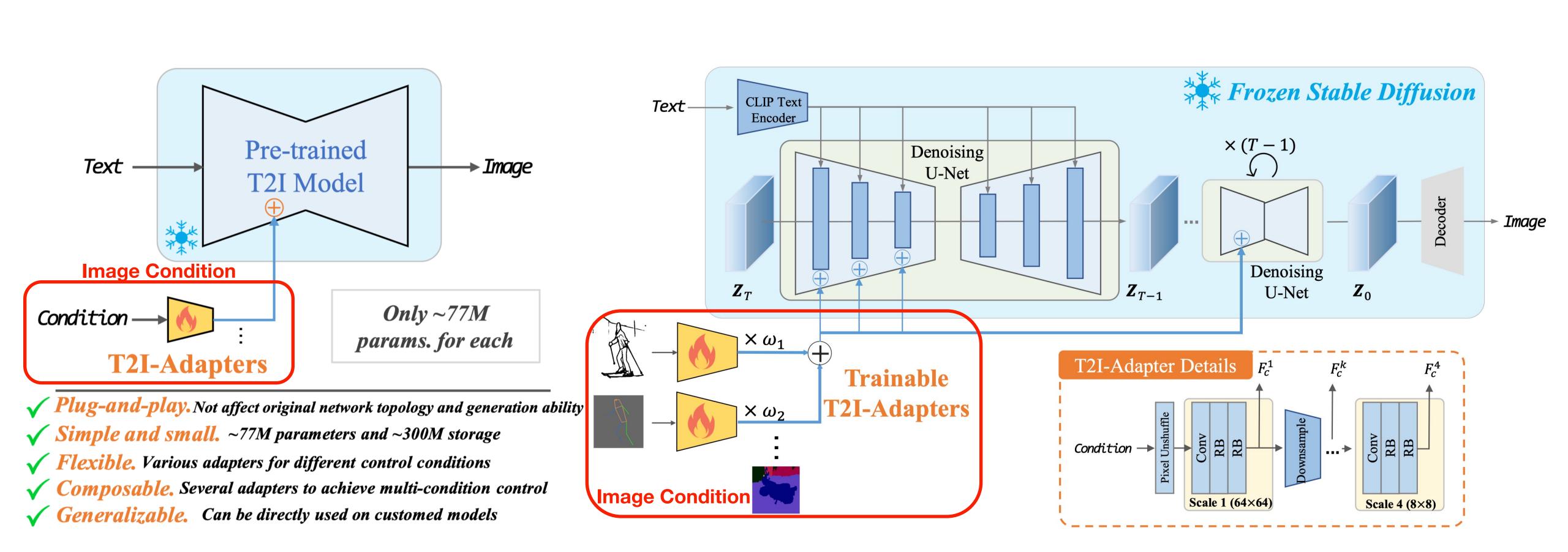


"Astronauts on the moon"





## **Encode the Image Features as the Condition for Denoising Training**



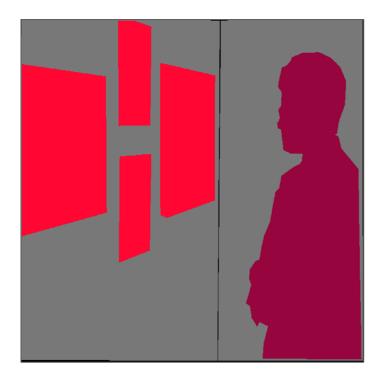
T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models, AAAI 2024

## Outline

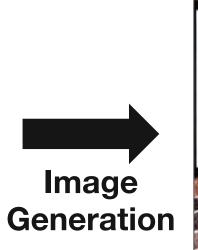
- Background: Generative Learning for Images
- **Motivation: Do existing methods achieve good controllability?**
- Method: Efficient Consistency Feedback

### Experiments: Better Controllability Without Loss of Image Quality and Text Guidance

# **Existing Methods Still Cannot Accurately Control Image Generation**



Input condition (Segmentation mask)

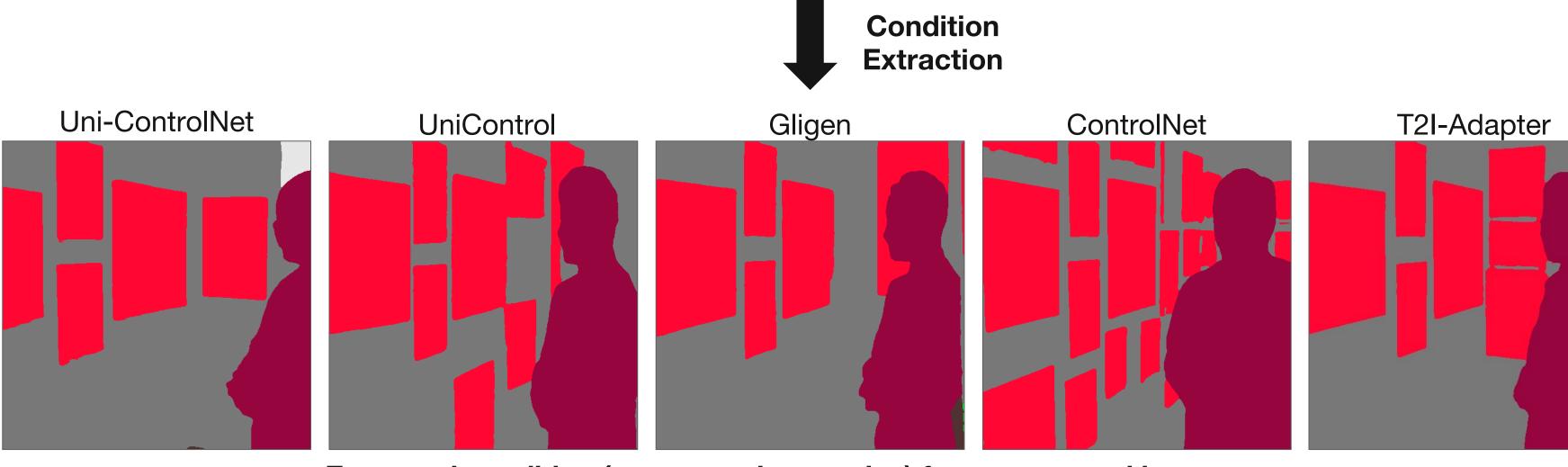


**Uni-ControlNet** 





### Inconsistencies between input and **extracted condition**



ControlNet++: Improving Conditional Controls with Efficient Consistency Feedback, ECCV 2024

### Generated images from existing controllable image generation methods

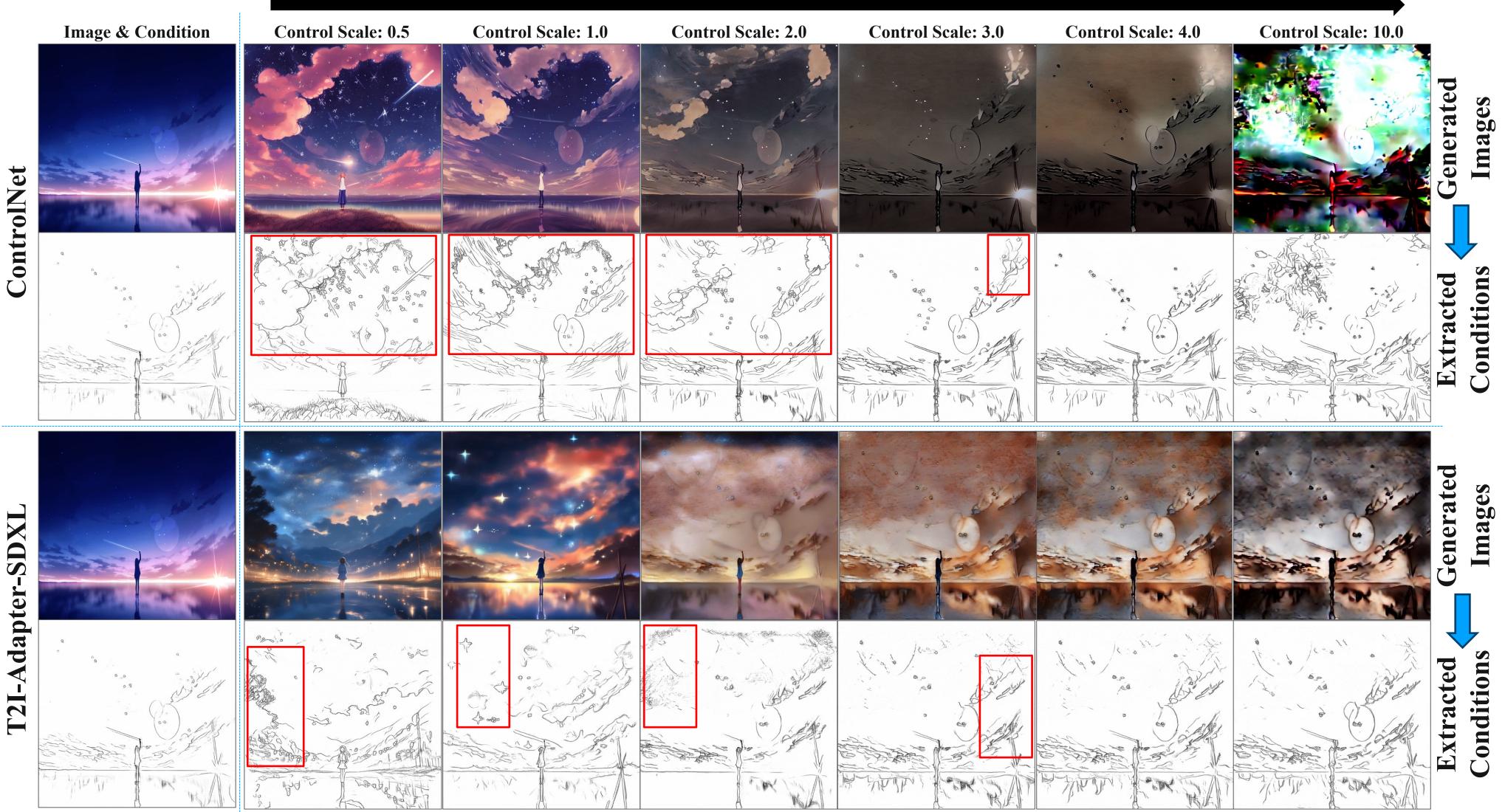
### Extracted condition (segmentation masks) from generated images





# **Controllability Cannot Be Improved by Emphasizing Image Condition**

### Image Condition Weight During Inference



SDXL

ControlNet++: Improving Conditional Controls with Efficient Consistency Feedback, ECCV 2024



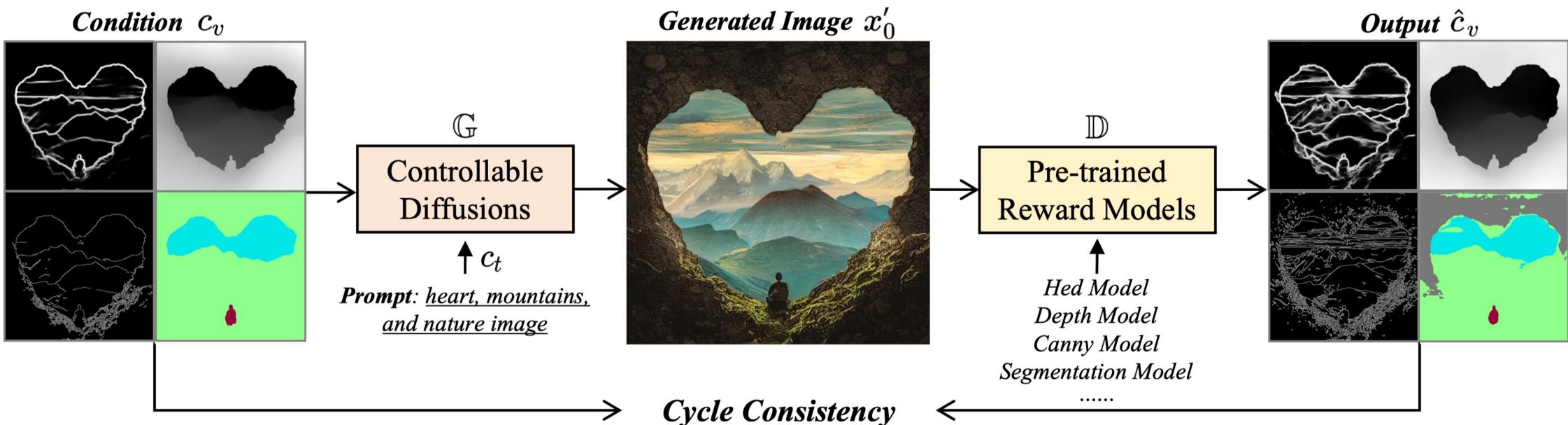
## Outline

- Background: Generative Learning for Images
- Motivation: Do existing methods achieve good controllability?
- **Method: Efficient Consistency Feedback**

Experiments: Better Controllability Without Loss of Image Quality and Text Guidance

# Improving Controllability by Cycle Consistency

- output generated images, the controllability can be defined as the consistency between them.
- and back again (generated image  $x'_0 \rightarrow$  condition  $\hat{c}_v$ ) we should arrive where we started ( $\hat{c}_v = c_v$ ).



ControlNet++: Improving Conditional Controls with Efficient Consistency Feedback, ECCV 2024 Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks, ICCV 2017

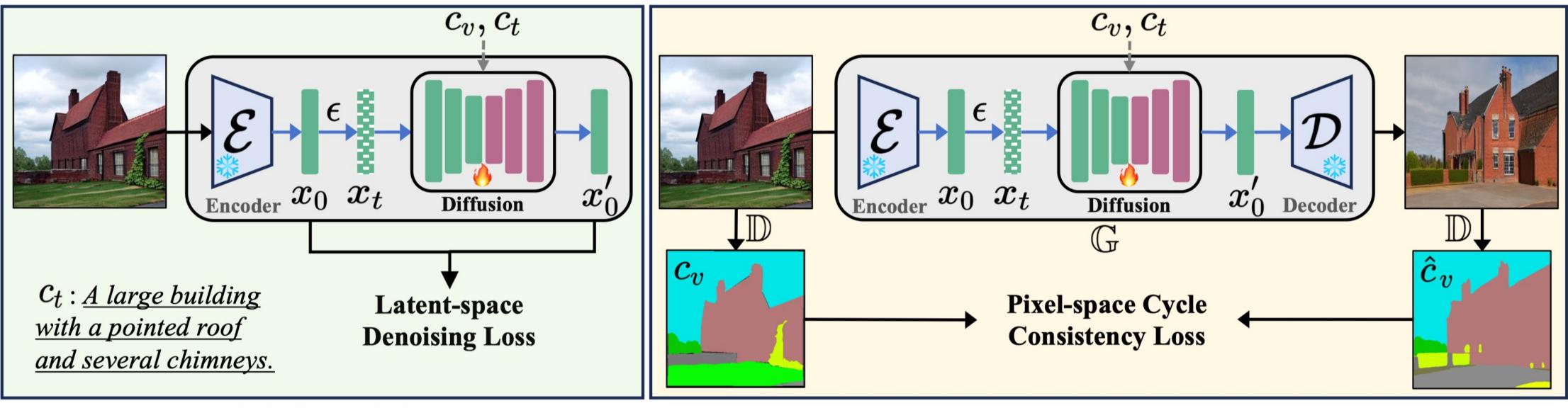
**Definition:** We model controllable generation as an image translation task from input conditions to

**Optimization**: If we translate images from one domain to the other (condition  $c_v \rightarrow$  generated image  $x'_0$ ),



# What Makes Our ControlNet++ More Controllable?

- a. the denoising process of diffusion models, with the guidance of latent-space denoising loss.
- via pixel-level cycle consistency loss.



(a) Existing Methods

Existing methods achieve implicit controllability by introducing image-based conditional control  $c_v$  into

b. We utilize discriminative reward models **D** to explicitly optimize the controllability of the diffusion model **G** 

(b) Our Solution



## **Default Step-by-Step Reward Strategy**

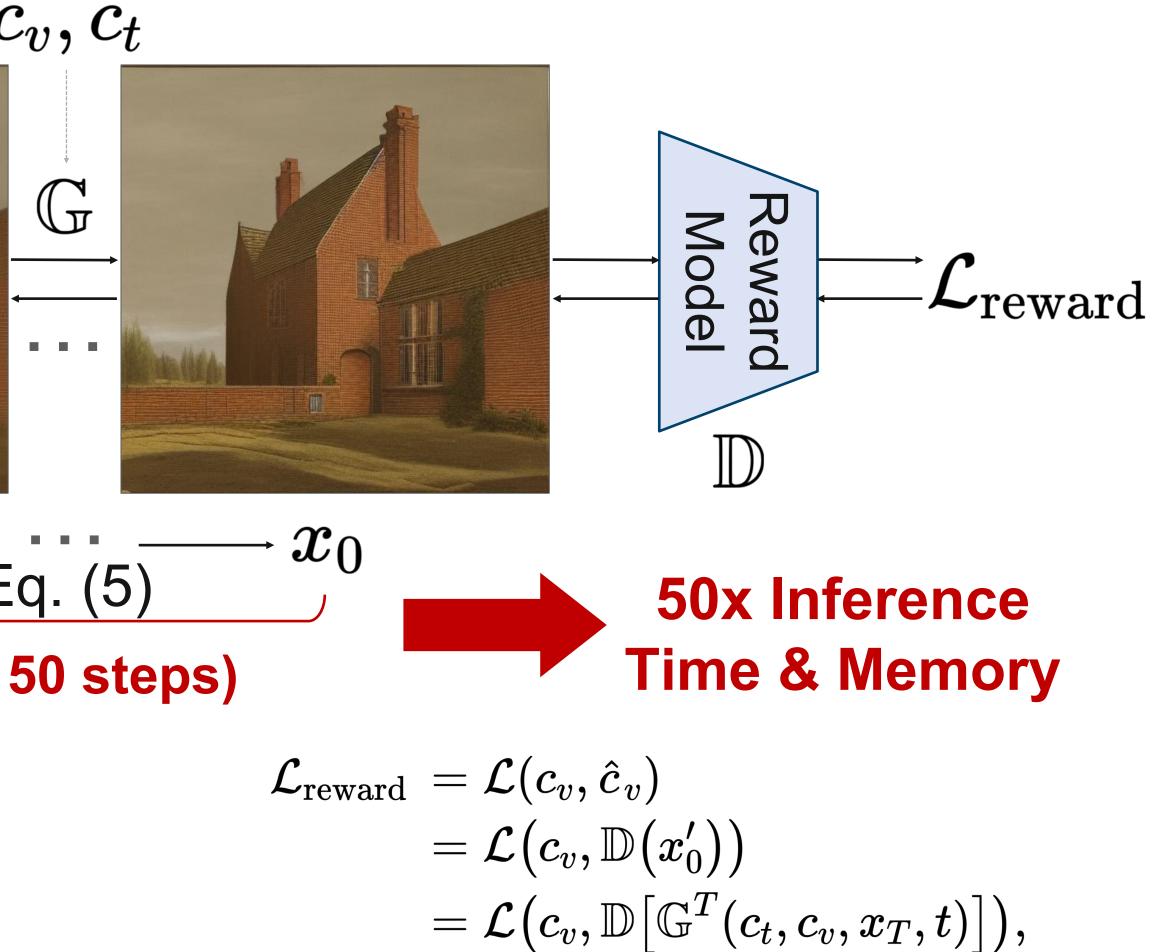
$$C_{v}, C_{t}$$

$$C_{v}, C_{v}, C_{t}$$

$$C_{v}, C_{v}, C_{v}$$

$$C_{v}, C_{v}, C_{v}, C_{v}, C_{v}$$

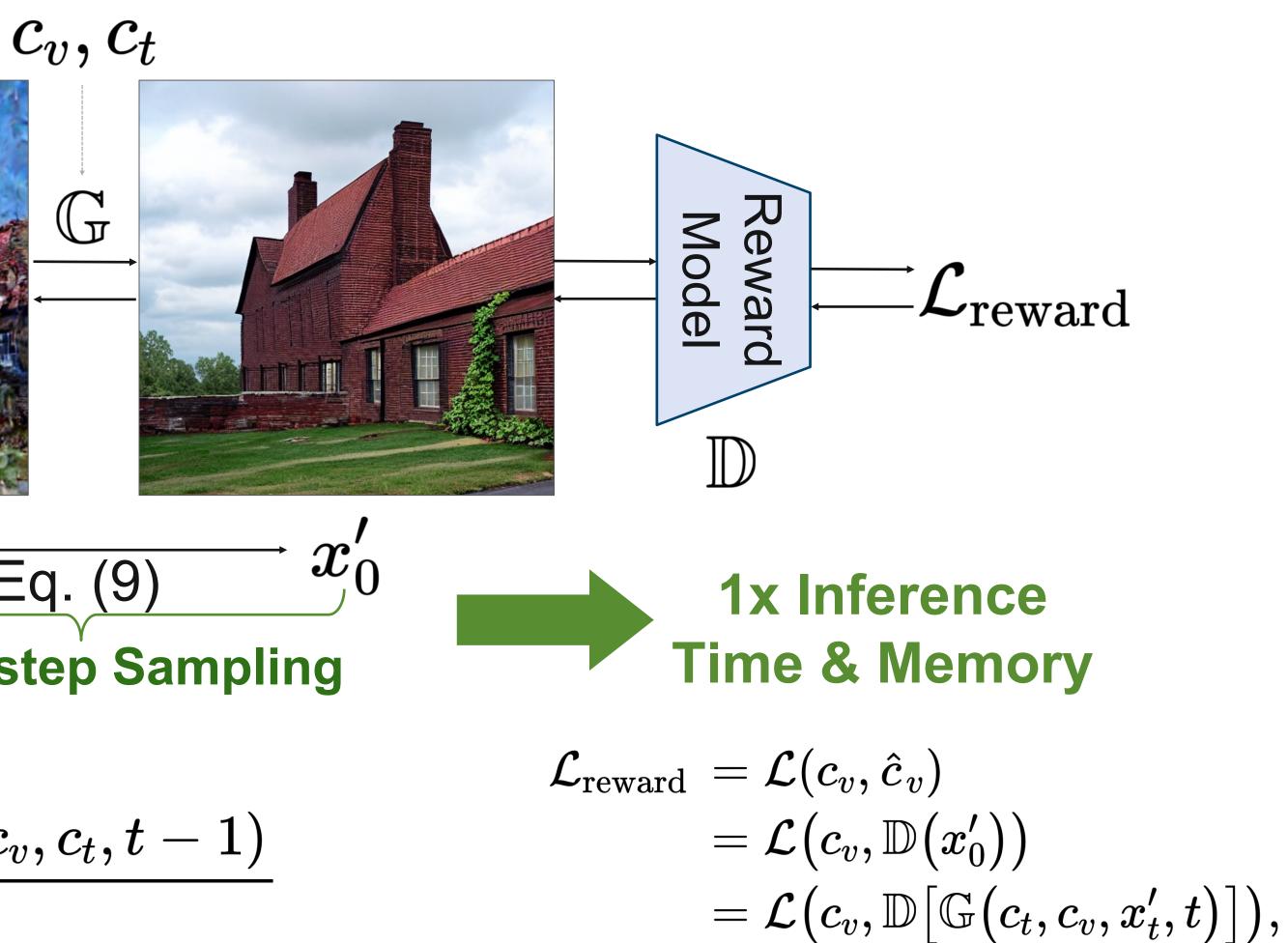
$$C_{v}, C_{v}, C_{v}$$



## **Our Efficient Reward Strategy**

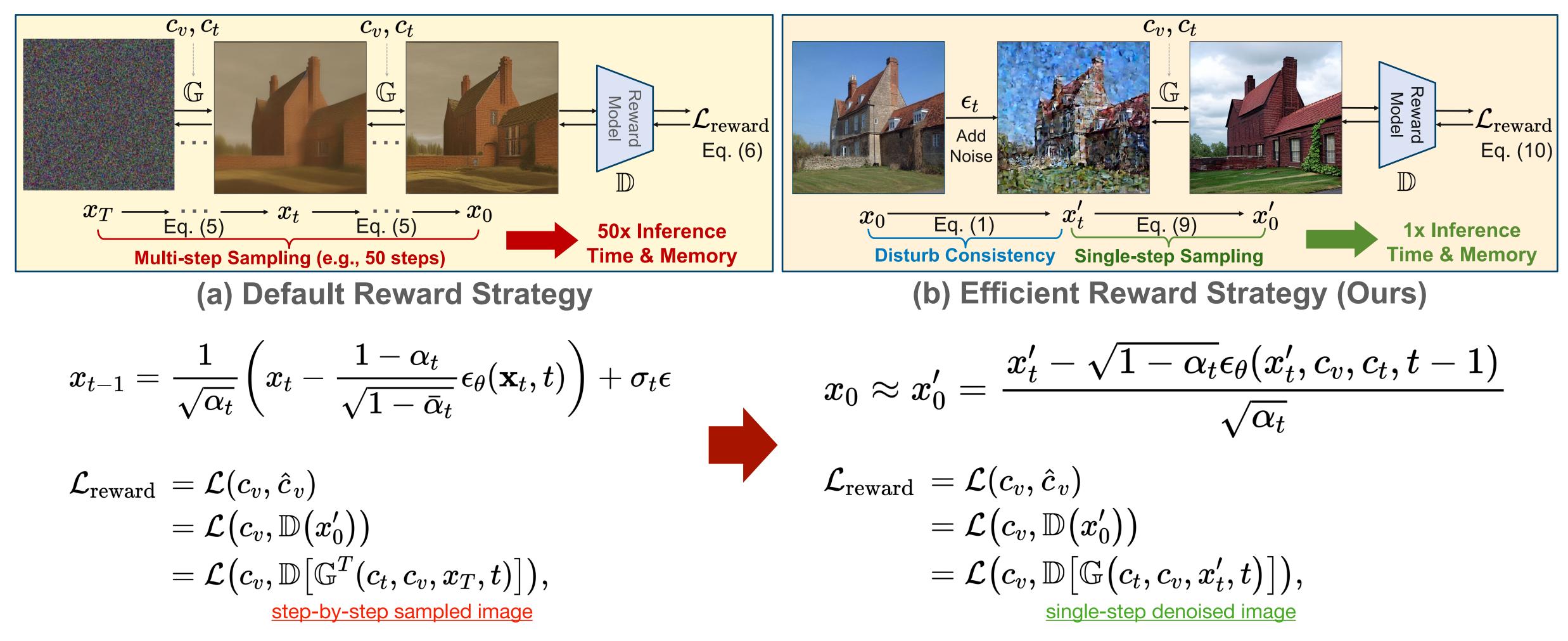
$$\frac{\epsilon_t}{\mathsf{Add}} = \frac{\epsilon_t}{\mathsf{Add}}$$

$$\frac{1}{\mathsf{Add}} = \frac{\mathbf{x}_t - \mathbf{x}_t}{\mathbf{x}_t - \mathbf{x}_t} = \frac{\mathbf{x}_t - \sqrt{1 - \alpha_t} \epsilon_{\theta}(x_t', c_v, \sqrt{\alpha_t})}{\sqrt{\alpha_t}}$$



# **Directly Optimizing All Timesteps is Computationally Infeasible**

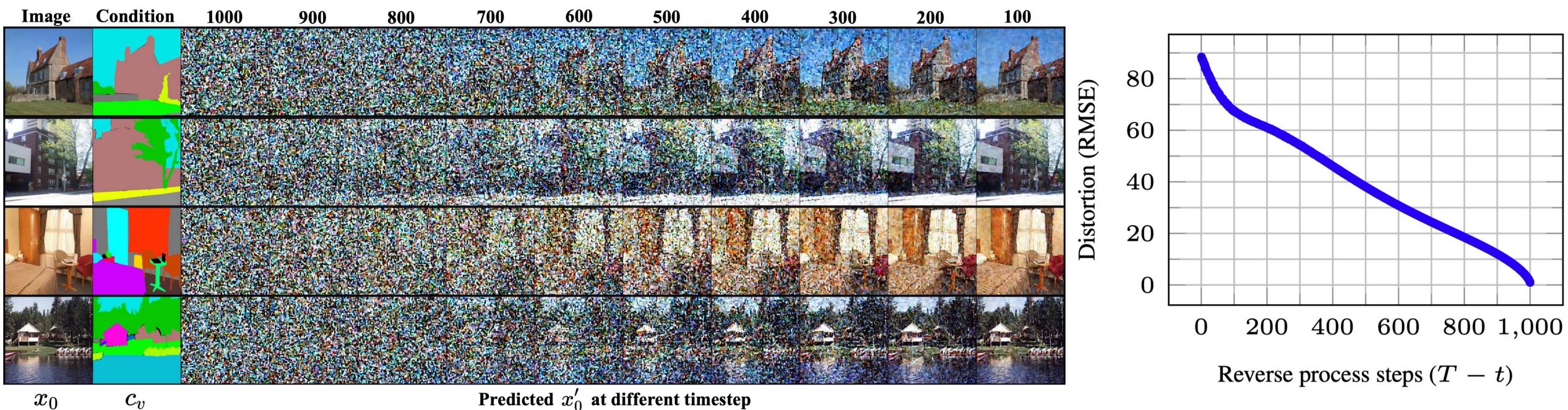
The core idea of (b) is to use the single-step denoised image to estimate the step-by-step sampled image for reward loss, thus avoiding the sampling progress and gradient storage.





## Such Estimation is Reasonable When Timestep is Small Enough

### **Single-step Denoising Visualizations**



### **Estimation Errors**

## Outline

- Background: Generative Learning for Images
- Motivation: Do existing methods achieve good controllability?
- Method: Efficient Consistency Feedback

### **Experiments: Better Controllability Without Loss of Image Quality and Text Guidance**

## **Evaluation Metrics**

### Controllability

- The consistency between the input condition and the condition extracted from the generated image. The specific metric Depends on each image condition
- ullet $\bullet$

### **Image Quality** $\bullet$

FID, a metric used to evaluate the feature distance between generated images and real images.  $\bullet$ 

### **Text-Image Alignment** lacksquare

CLIP-Score, measuring the image-text alignment between the input text and the generated image. lacksquare

### **Better Controllability Than Other Methods**

**Table 1:** Controllability comparison with state-of-the-art methods under different conditional controls and datasets.  $\uparrow$  denotes higher result is better, while  $\downarrow$  means lower is better. ControlNet++ achieves significant controllability improvements. '-' indicates that the method does not provide a public model for testing. We generate four groups of images in png format and report the average result to reduce random errors.

| Condition<br>(Metric)       | T2I<br>Model | Seg. Mask<br>(mIoU ↑) |                   | Canny Edge<br>(F1 Score ↑) | Hed Edge<br>(SSIM ↑) | LineArt Edge<br>(SSIM ↑) | $\begin{array}{c c} \textbf{Depth Map} \\ \textbf{(RMSE \downarrow)} \end{array}$ |
|-----------------------------|--------------|-----------------------|-------------------|----------------------------|----------------------|--------------------------|-----------------------------------------------------------------------------------|
| Dataset                     | widder       | ADE20K                | <b>COCO-Stuff</b> | MultiGen-20M               | MultiGen-20M         | MultiGen-20M             | MultiGen-20M                                                                      |
| ControlNet                  | SDXL         | -                     | -                 | -                          | -                    | -                        | 40.00                                                                             |
| T2I-Adapter                 | SDXL         | -                     | -                 | 28.01                      | -                    | 0.6394                   | 39.75                                                                             |
| T2I-Adapter                 | SD1.5        | 12.61                 | -                 | 23.65                      | -                    | -                        | 48.40                                                                             |
| Gligen                      | SD1.4        | 23.78                 | _                 | 26.94                      | 0.5634               | -                        | 38.83                                                                             |
| Uni-ControlNet              | SD1.5        | 19.39                 | -                 | 27.32                      | 0.6910               | -                        | 40.65                                                                             |
| UniControl                  | SD1.5        | 25.44                 | _                 | 30.82                      | 0.7969               | -                        | 39.18                                                                             |
| $\operatorname{ControlNet}$ | SD1.5        | 32.55                 | 27.46             | 34.65                      | 0.7621               | 0.7054                   | 35.90                                                                             |
| Ours                        | SD1.5        | 43.64                 | 34.56             | 37.04                      | 0.8097               | 0.8399                   | 28.32                                                                             |

# No Loss of Image Quality (FID) and Text-Image Alignment (CLIP Score)

**Table 2:** FID  $(\downarrow)$  comparison with state-of-the-art methods under different conditional controls and datasets. All the results are conducted on  $512 \times 512$  image resolution with Clean-FID implementation 33 for fair comparisons. '-' indicates that the method does not provide a public model for testing. We generate four groups of images in png format and report the average result to reduce random errors.

| Method                      | T2I Seg. M |        | /Iask | Canny Edge   | Hed Edge     | LineArt Edge | Depth Map    |
|-----------------------------|------------|--------|-------|--------------|--------------|--------------|--------------|
|                             | Model      | ADE20K | COCO  | MultiGen-20M | MultiGen-20M | MultiGen-20M | MultiGen-20M |
| Gligen                      | SD1.4      | 33.02  | -     | 18.89        | -            | -            | 18.36        |
| T2I-Adapter                 | SD1.5      | 39.15  | -     | 15.96        | -            | -            | 22.52        |
| UniControlNet               | SD1.5      | 39.70  | -     | 17.14        | 17.08        | -            | 20.27        |
| UniControl                  | SD1.5      | 46.34  | -     | 19.94        | 15.99        | -            | 18.66        |
| $\operatorname{ControlNet}$ | SD1.5      | 33.28  | 21.33 | 14.73        | 15.41        | 17.44        | 17.76        |
| Ours                        | SD1.5      | 29.49  | 19.29 | 18.23        | 15.01        | 13.88        | 16.66        |

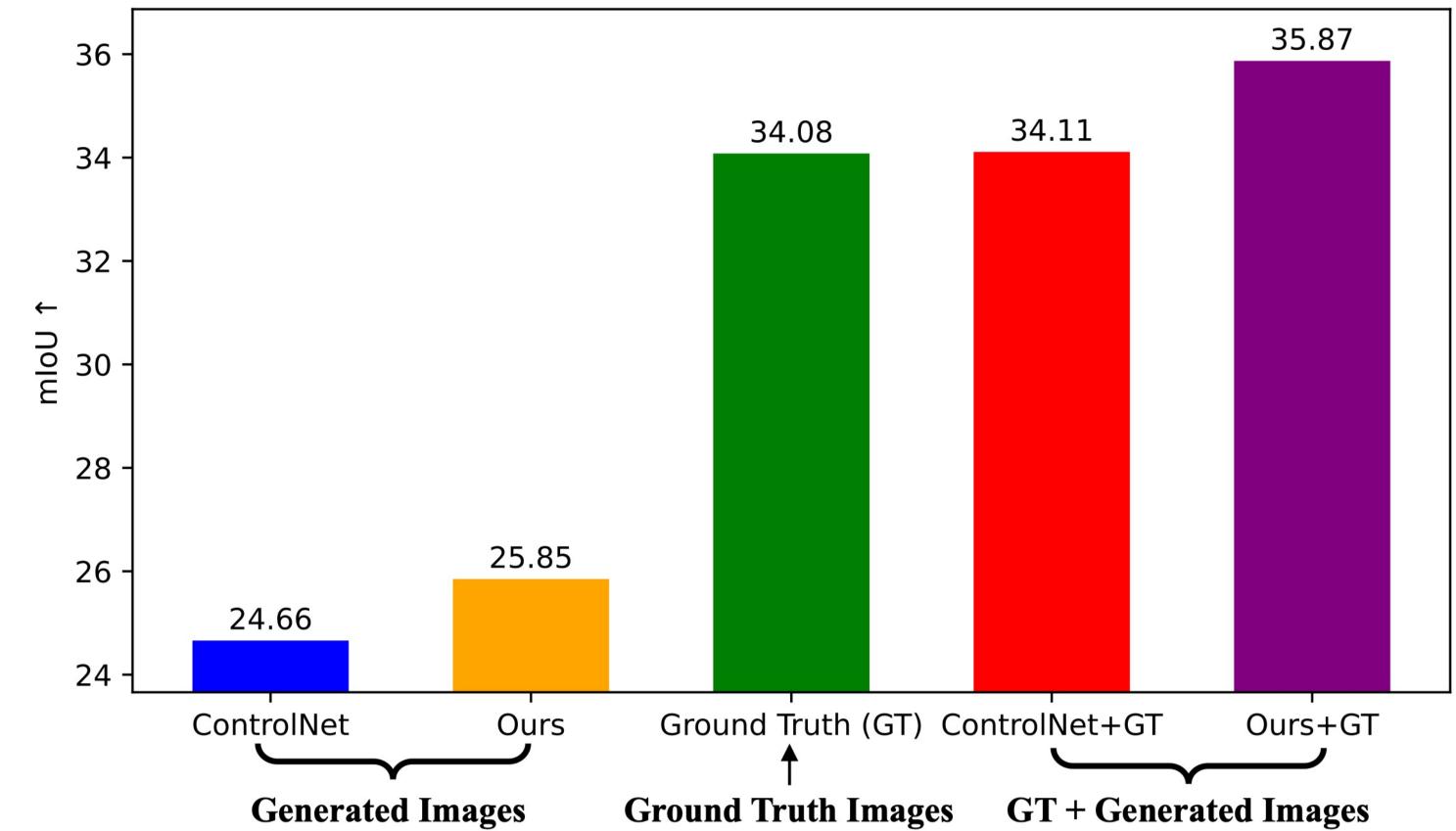
**Table 3:** CLIP-score  $(\uparrow)$  comparison with state-of-the-art methods under different conditional controls and datasets. '-' indicates that the method does not provide a public model for testing. We generate four groups of images in png format and report the average result to reduce random errors.

| $\mathbf{Method}$           | T2I   | Seg. Mask |       | Canny Edge   | Hed Edge     | LineArt Edge | Depth Map    |
|-----------------------------|-------|-----------|-------|--------------|--------------|--------------|--------------|
|                             | Model | ADE20K    | COCO  | MultiGen-20M | MultiGen-20M | MultiGen-20M | MultiGen-20M |
| Gligen                      | SD1.4 | 31.12     | -     | 31.77        | -            | -            | 31.75        |
| T2I-Adapter                 | SD1.5 | 30.65     | -     | 31.71        | -            | -            | 31.46        |
| UniControlNet               | SD1.5 | 30.59     | -     | 31.84        | 31.94        | -            | 31.66        |
| UniControl                  | SD1.5 | 30.92     | -     | 31.97        | 32.02        | -            | 32.45        |
| $\operatorname{ControlNet}$ | SD1.5 | 31.53     | 13.31 | 32.15        | 32.33        | 32.46        | 32.45        |
| Ours                        | SD1.5 | 31.96     | 13.13 | 31.87        | 32.05        | 31.95        | 32.09        |



# **Controllable Generative Models in Return Help Discriminative Models!**

Performance of DeepLabv3 Trained on Different Data



**ControlNet++: Improving Conditional Controls with Efficient Consistency Feedback, ECCV 2024** 

**Fig. 5:** Training DeepLabv3 (MobileNetv2) from scratch with different images, including ground truth images from ADE20K, and the generated images from ControlNet and ours. All the labels (i.e., segmentation masks) are ground truth labels in ADE20K. Please note improvements here are non-trivial for semantic segmentation.



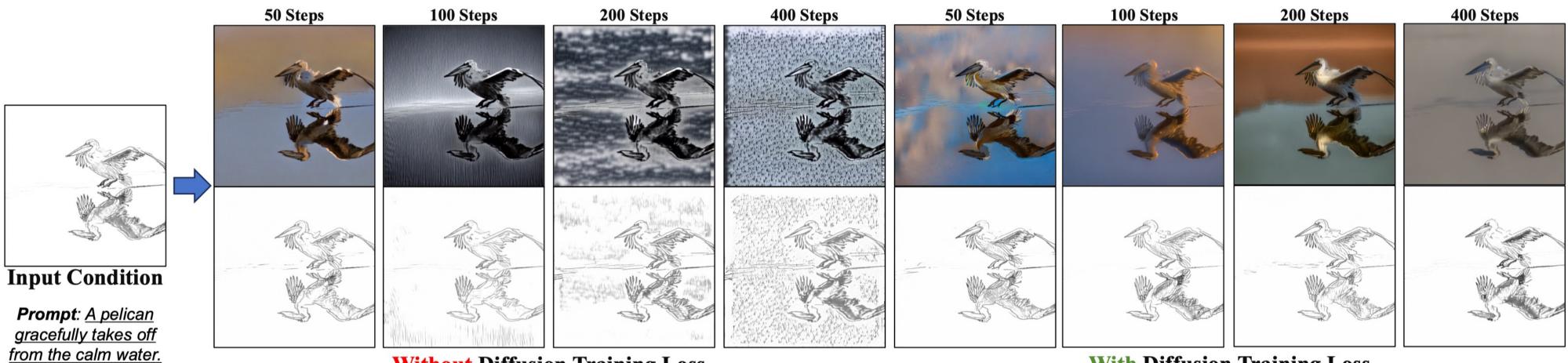
## **Ablation Studies**

### **Reward Loss can be applied to time** steps that are not explicitly optimized

Table 4: The impact of efficient reward fine-tuning on different timesteps.

| Unoptimized              | Optimized                | ADE20K            |
|--------------------------|--------------------------|-------------------|
| $\left[T,t_{thre} ight]$ | $\left[t_{thre},1 ight]$ | $mIoU (\uparrow)$ |
| ControlNet               | ControlNet               | 32.55             |
| ControlNet               | Ours                     | 38.03             |
| Ours                     | ControlNet               | 41.46             |
| Ours                     | Ours                     | 43.64             |

### **Reward Loss should be used together with Diffusion Training Loss**



**Without** Diffusion Training Loss

### More powerful reward model leads to better controllable diffusion models

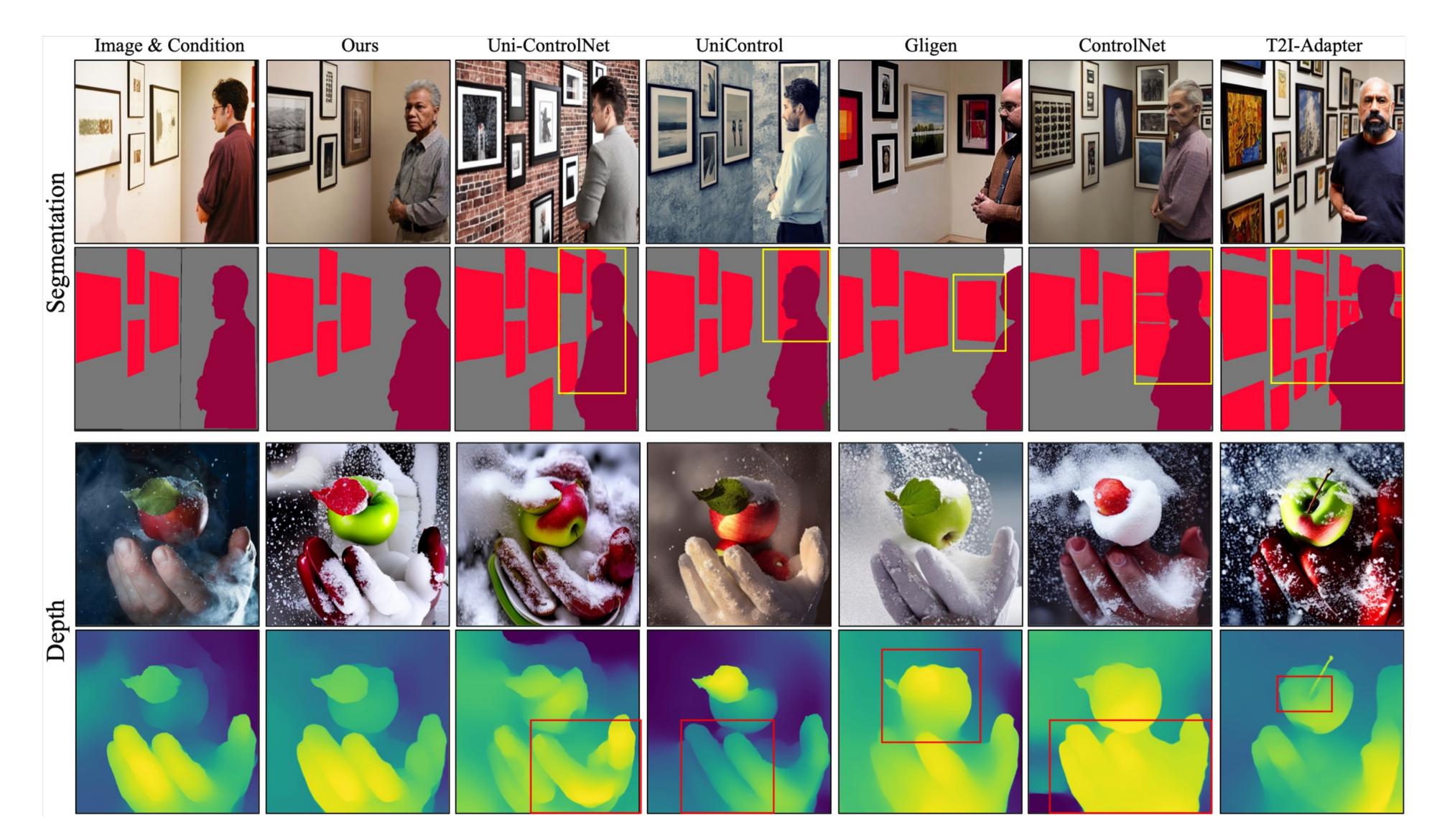
**Table 5:** Stronger reward model (UperNet-R50) leads to better controllability than the weaker reward model (DeepLabv3-MBv2).

**Reward Model (RM)** |**RM mIoU** $\uparrow|$ **Eval mIoU** $\uparrow|$ 

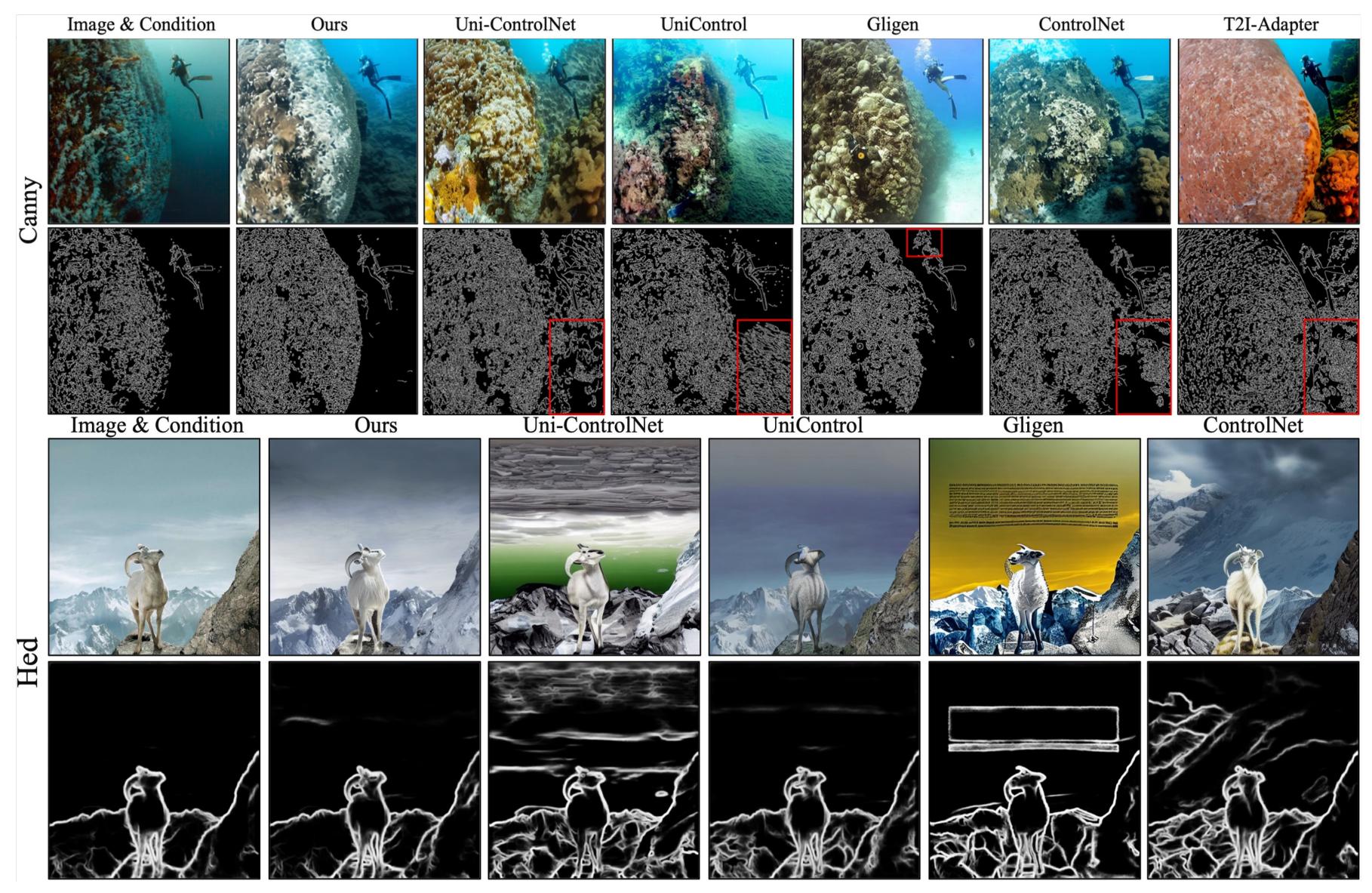
| _                     | -            | 32.55        |
|-----------------------|--------------|--------------|
| ${ m DeepLabv3-MBv2}$ | 34.02        | 31.96        |
| FCN-R101              | 39.91        | 40.44        |
| UperNet-R50           | <b>42.05</b> | <b>43.64</b> |

With Diffusion Training Loss

## **Visualization Comparison**



## **Visualization Comparison**



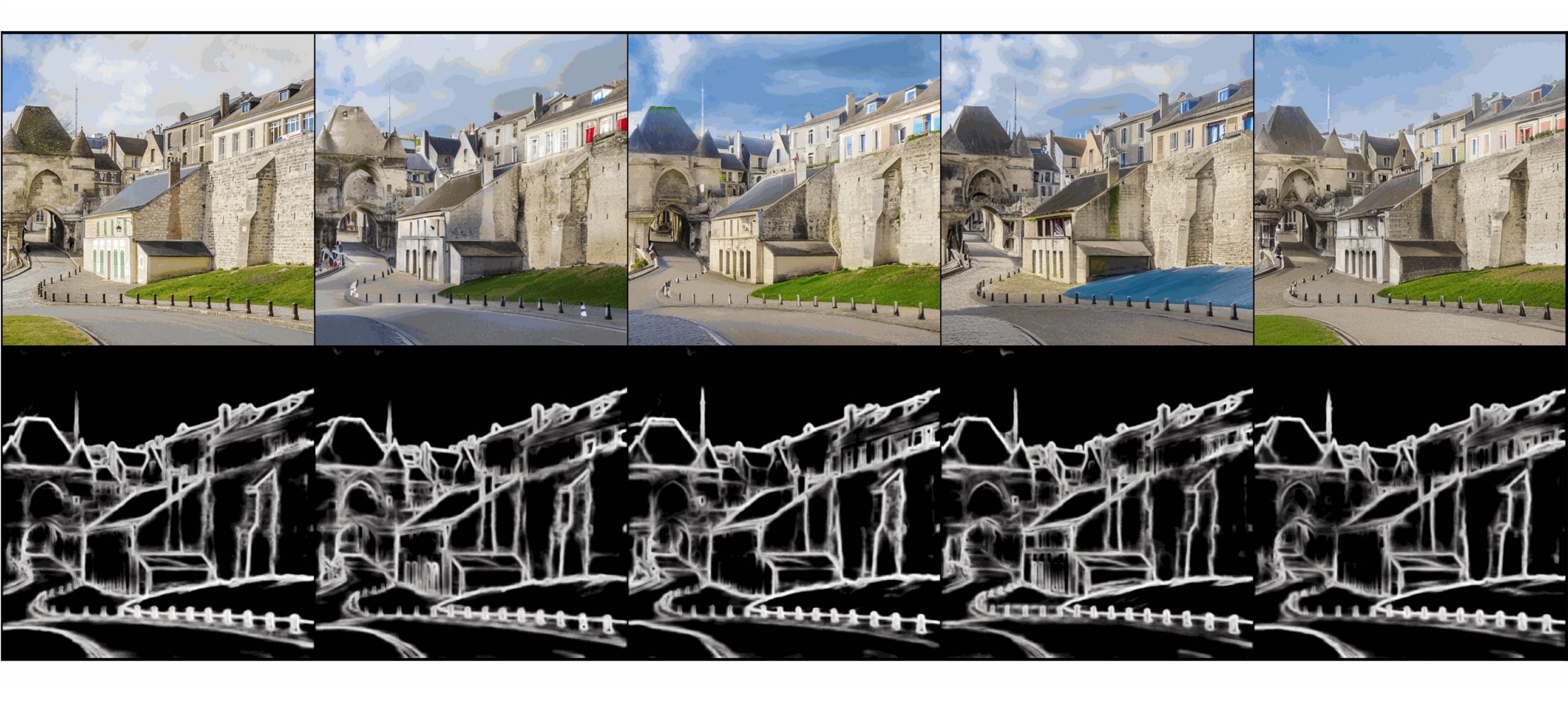
## Visualization Results of Our ControlNet++ (Line Drawing)



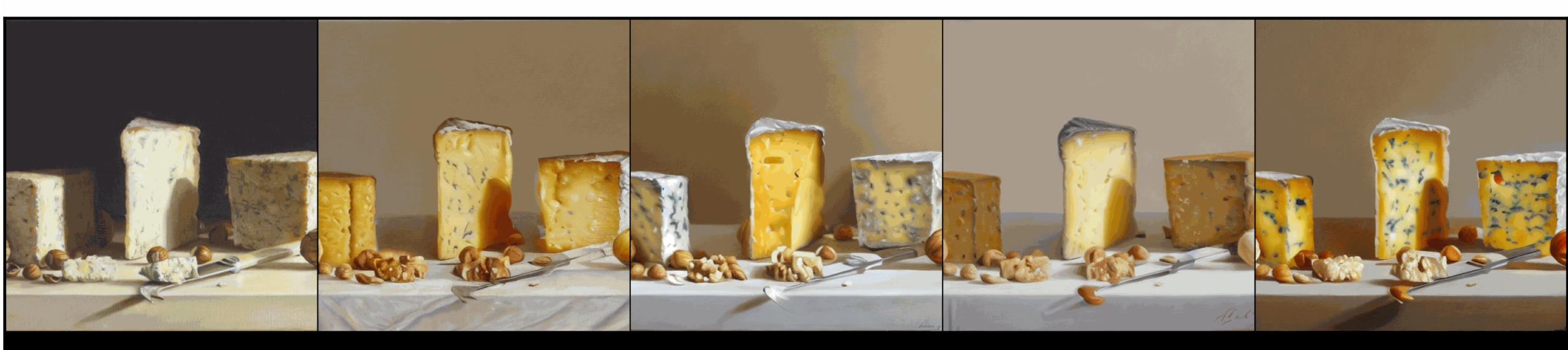
## Visualization Results of Our ControlNet++ (Depth Map)



## Visualization Results of Our ControlNet++ (Hed Edge)



## Visualization Results of Our ControlNet++ (Canny Edge)





## Visualization Results of Our ControlNet++ (Segmentation Mask)



