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Abstract. Fisheye image rectification aims to correct distortions in im-
ages taken with fisheye cameras. Although current models show promis-
ing results on images with a similar degree of distortion as the training
data, they will produce sub-optimal results when the degree of distor-
tion changes and without retraining. The lack of generalization ability
for dealing with varying degrees of distortion limits their practical ap-
plication. In this paper, we take one step further to enable effective dis-
tortion rectification for images with varying degrees of distortion with-
out retraining. We propose a novel Query-based Controllable Distor-
tion Rectification network for fisheye images (QueryCDR). In particu-
lar, we first present the Distortion-aware Learnable Query Mechanism
(DLQM), which defines the latent spatial relationships for different dis-
tortion degrees as a series of learnable queries. Each query can be learned
to obtain position-dependent rectification control conditions, providing
control over the rectification process. Then, we propose two kinds of
controllable modulating blocks to enable the control conditions to guide
the modulation of the distortion features better. These core components
cooperate with each other to effectively boost the generalization ability
of the model at varying degrees of distortion. Extensive experiments on
fisheye image datasets with different distortion degrees demonstrate our
approach achieves high-quality and controllable distortion rectification.
Code is available at https://github.com/PbGuo/QueryCDR.
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1 Introduction

Benefiting from the huge field-of-view (FoV), fisheye cameras are widely utilized
in various fields, including security surveillance [26, 34] and autonomous driv-
ing [11, 38]. However, the distortion brought by the fisheye lenses greatly limits
the performance of downstream vision tasks [9, 21, 36, 60]. How to eliminate the
distortion in fisheye images has attracted great attention in recent years.

Early methods [3,5,14,18,37,40,46,59] primarily relied on identifying match-
ing feature points or curves for automatic rectification. However, constrained by
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Fig. 1: Different approaches to fisheye image distortion rectification. (a) Regression-
Based: Using a neural network to predict distortion-related parameters, then apply
rectification algorithms R for rectification. (b) Generation-Based: Input the distorted
fisheye image and directly generate the rectified image end-to-end. (c) Control-Based:
Users provide control conditions to guide the rectification process, resulting in promis-
ing rectified images of various distortion degrees.

the instability of feature detection, both the generalization of the algorithm
and the quality of the rectified images were unsatisfactory [10, 24, 52]. In re-
cent years, owing to the robust learning and generalization capabilities of neural
networks, deep learning-based fisheye image rectification methods have become
mainstream. These methods can be divided into two categories: regression-based
rectification [4,23,39,50,56] and generation-based rectification [10,24,25,52,54].
The former uses deep regression models to predict distortion parameters for im-
age reconstruction, as shown in Fig. 1(a). The latter uses an encoder-decoder
structure to generate well-rectified images directly, as shown in Fig. 1(b).

It is worth noting that these methods only achieve satisfactory results on
a similar degree of distortion as the training data. This means that when han-
dling different degrees of distortion without retraining, there will be a significant
decrease in the quality of the rectified images [25]. This is because the model
tends to learn fixed position mapping relationships during training. When the
distortion degree changes, this relationship does not work for the new distortion
distribution. Therefore, these models usually need to be retrained on images
with different distortion degrees. In addition, fisheye image acquisition is dif-
ficult, and re-collecting new datasets with varying degrees of distortion would
incur significant costs [52, 54]. Thus, it is essential to explore a model that can
handle different degrees of distortion simultaneously.

In recent years, some methods have been proposed to achieve controllable im-
age restoration [7,15,16,33,47,48,55,61]. Typically, CFSNet [47], MM-RealSR [33],
and Yao et al . [55] introduce scalars as control conditions to effectively restore
degradation of varying degrees. It would be a promising solution to introduce
an effectively controllable mechanism to deal with all degrees of distortion, as
shown in Fig. 1(c). However, directly applying existing controllable mechanisms
in restoration tasks to the fisheye rectification model suffers from the follow-
ing challenges: 1) There is a gap between optimization objectives (i.e. the roles
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of the controllable mechanisms). Restoration models learn the pixel-level detail
restoration, whereas fisheye rectification models learn the spatial-level positional
mapping relationships [10,25]. The control mechanism lacking position informa-
tion in restoration tasks is ineffective in controlling distortion rectification net-
works. 2) There is a gap between optimization difficulties (i.e. the roles of the
control conditions). The distortion of a fisheye image increases gradually from
the image center to boundary [51]. Therefore, it is not suitable to use a single
scalar control condition in restoration tasks to deal with such spatially varying
distortions. These challenges restrict the application of controllable mechanisms
and control conditions in fisheye image rectification.

To address these issues, we propose the Query-based Controllable Distortion
Rectification network (QueryCDR), as shown in Fig. 2. By introducing a series
of learnable queries as control conditions, QueryCDR allows the users to achieve
fisheye rectification with different distortion degrees. Specifically, to incorpo-
rate positional mapping relationships into control conditions, we introduce the
Distortion-aware Learnable Query Mechanism (DLQM), which defines a series of
queries representing different rectification control conditions. During inference,
DLQM extracts position-dependent control conditions from the user-given query
and feeds them into the network for controlling the rectification process. Fur-
thermore, to enable the control conditions to guide the rectification efficiently,
we propose two types of controllable modulating blocks: the Controllable Con-
volution Modulating Block (CCMB) based on CNN [17], and the Controllable
Attention Modulating Block (CAMB) based on Transformer [45]. They are good
at extracting local texture features and learning long-range distortion mapping
relationships, respectively. By combining CCMB and CAMB, we construct a ro-
bust controllable rectification network. Our QueryCDR can handle various dis-
tortions without retraining, enhancing the generalization ability of the fisheye
rectification model.

We summarize our contributions as follows:

– We propose QueryCDR, a Query-based Controllable Distortion Rectifica-
tion network for fisheye images. Extensive experiments demonstrate that our
QueryCDR can deliver superior results on a variety of distortion degrees.

– We propose the Distortion-aware Learnable Query Mechanism (DLQM),
which effectively introduces the latent spatial relationships to control condi-
tions for fisheye image rectification.

– We propose two kinds of blocks for modulating features using control con-
ditions: the Controllable Convolution Modulating Block (CCMB) and the
Controllable Attention Modulating Block (CAMB). They can effectively uti-
lize control conditions to guide the rectification process.

2 Related Work

2.1 Traditional Fisheye Image Rectification

Traditional rectification methods can be divided into two types, multi-view-
based and line-based methods. Multi-view-based methods [3,14,18,20,37,41,43]
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calibrated fisheye images by finding corresponding feature points from multiple
viewpoints. Line-based methods [2,5,8,32,40,44,46,59] employed line detection
to rectify the curved lines, thereby achieving distortion rectification. However,
these methods require manual intervention or handcrafted feature extractors,
and the rectification process is unstable, failing to achieve satisfactory results.

2.2 Deep Learning Based Fisheye Image Rectification

Rapid advances in deep learning have allowed them to shine in low-level vision
tasks [6, 22, 28–31, 49, 58]. As a core task in low-level vision, distortion image
rectification has received increasing attention [10, 24, 39, 52, 54, 56]. According
to the network architecture, deep learning-based distortion image rectification
methods can be categorized into two types, regression-based methods [4, 23, 39,
50,56] and generation-based methods [10,24,25,52,54].

Regression-based methods [4,23,39,50,56] utilize neural networks to predict
distortion-related coefficients for rectifying the image. Rong et al . [39] were the
first to use CNNs for fisheye image rectification. They employed the network
to predict across multiple distortion intervals, achieving preliminary rectifica-
tion results. Yin et al . [56] integrated semantics as prior information to guide
rectification. While these methods have shown some performance improvement,
they face the challenge of non-end-to-end design, thus requiring a large num-
ber of additional labels, and increasing operational costs. Therefore, to reduce
models’ complexity, Generation-based methods [10, 24, 25, 52, 54] employ gener-
ative networks to take distorted images as input and directly generate rectified
images. DR-GAN [24] was the first to apply a generative adversarial network
(GAN) [12] to fisheye image rectification, enabling the network to directly gen-
erate rectified images without estimating additional parameters. DDM [25] intro-
duced distortion maps to help the model better learn the distortion distribution.
PCN [52] designed a flow estimation module to predict appearance flows in fish-
eye images, using it to assist the rectification progress. SimFIR [10] introduced
a self-supervised rectification module, allowing the network to better learn the
distortion representations at different locations. However, both paradigms re-
quire retraining when handling images with different distortion degrees, failing
to address the issue of weak model generalization.

2.3 Controllable Low-level Vision

To address the issue of varying degradation levels in low-level vision tasks, an in-
creasing number of studies [7,15,16,33,47,48,55,61] propose controllable network
architectures to tackle this challenge. DNI [48] interpolated all parameters of dif-
ferent restoration networks, which were trained with different degradation levels.
By adjusting the interpolation coefficients, a smooth control of the image can be
achieved. AdaFM [15] achieved better results by inserting AdaFM layers after
each convolution layer to change the filters’ statistics, thus the users can inter-
actively manipulate the restoration results by tuning a control coefficient. CFS-
Net [47] introduced the tuning branch to adaptively learn the control coefficients,
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Fig. 2: Overview of our proposed Query-based Controllable Distortion Rectification
network (QueryCDR). The Distortion-aware Learnable Query Mechanism (DLQM)
extracts control conditions from user-given queries and feeds them layer by layer into
the rectification network. The rectification network is composed of Controllable Con-
volution Modulating Blocks (CCMB) and Controllable Attention Modulating Blocks
(CAMB), which modulate the input features Fin with control conditions Fc, enabling
controllable rectification process.

and then use them to couple the features with the main branch. MM-RealSR [33]
proposed a metric learning strategy to map unquantifiable degradation levels to
a metric space as control conditions. However, due to the different optimization
objectives and complexity of the control mechanisms, directly applying these
methods to fisheye image distortion rectification tasks will not achieve effective
control over the rectification process.

3 Methodology

3.1 Overview

The overview of our proposed Query-based Controllable Distortion Rectification
network (QueryCDR) is shown in Fig. 2. First, following existing work [52], the
input fisheye image is fed into the flow estimation module to obtain the ap-
pearance flow, which performs a coarse-grained rectification for image features
(i.e., warping ω(·)). Then, the Distortion-aware Learnable Query Mechanism
(DLQM) (in Sec. 3.2) extracts control conditions from the user-given query and
feeds them layer by layer into the rectification network. Finally, a U-shaped hier-
archical network composed of several controllable modulating blocks (in Sec. 3.3)
is used to rectify the distorted input image. These blocks modulate features with
the control conditions given by DLQM, to get the final output.

In the following, we will provide a comprehensive description of each module
and its corresponding role in the QueryCDR.
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Fig. 3: Given an input image, QueryCDR can accurately produce results with different
rectification degrees by feeding different queries. Moreover, by interpolating between
different queries, we can achieve smooth continuous rectification for any distortion
degree. For examples, Q1.25 = 0.75Q1 + 0.25Q2, and Q8.5 = 0.5Q8 + 0.5Q9.

3.2 Distortion-aware Learnable Query Mechanism (DLQM)

To achieve control over the rectification process, most existing controllable meth-
ods [33,47,55] introduce scalars as control conditions to represent the degradation
degrees for image reconstruction. However, due to the peculiarities of distortion
in fisheye images [10, 42, 53], these methods fail to achieve effective control over
the rectification process. To address this issue, we propose the DLQM. It main-
tains a learnable query set, providing diverse effective control conditions for
the rectification network. During training, DLQM projects the learned high-
dimensional positional mapping relationship into a low-dimensional latent space
of queries. During inference, DLQM extracts the control information from the
queries and converts it into corresponding control conditions for each layer of
the rectification network. Simply by providing different queries, DLQM can effec-
tively control the rectification process, as shown in Fig. 3. At the same time, our
QueryCDR can also achieve smooth continuous rectification for any distortion
degrees by simply interpolating between different queries.

Specifically, we construct a query set Qs = {Qi | Qi ∈ RCin×Hin×Win , i =
1, 2, . . . , N}, which comprises N queries representing different distortion degrees.
Hin, Win, and Cin represent the query’s height, width, and channel, respectively.
Each query has the same size as the input image Iin ∈ RCin×Hin×Win . During
inference, users select a query Qi from Qs and feed it into the DLQM. In DLQM,
the control extracting part CE(·) is firstly used to extract the features in Qi.
The input processing part can be expressed as follows,

Qex = CE(Qi), (1)

where Qex ∈ RCin×Hin×Win is the extracted feature, and serves as the input to
the first control layer of DLQM. To minimize the computational costs and effec-
tively extract the control information, CE(·) is composed of three convolution
layers with a kernel size of 3× 3.

Subsequently, DLQM provides corresponding control conditions to the re-
spective layers of the rectification network. To provide appropriate control con-
ditions, each control layer of DLQM comprises two fully connected layers FC1(·),
FC2(·). The l-th layer of DLQM can be represented as follows,

Ql
c = FCl

2(FCl
1(Q

l−1
c )), (2)
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where Ql−1
c is the output control condition from the (l − 1)-th control layer.

For l = 1, Q0
c represents the extracted feature Qex. The output Ql

c of the l-th
control layer is fed into the l-th rectification layer as a control condition, and
simultaneously serves as input to the (l + 1)-th control layer of DLQM.

Afterward, we feed the control conditions into the rectification network. Each
layer’s controllable modulating block modulates the input feature with the con-
trol condition, guiding the modulated features toward the desired direction.

3.3 Controllable Modulating Block

When controlling the rectification process, to avoid obtaining results with blurred
texture details or residual distortions, we introduce two types of controllable
modulating blocks tailored for reconstructing local texture details and learning
continuous distortion patterns. They are denoted as the Controllable Convo-
lution Modulating Block (CCMB) based on CNN [17] (in Fig. 2(a)) and the
Controllable Attention Modulating Block (CAMB) based on Transformer [45]
(in Fig. 2(b)). The CCMB can adaptively fuse the original features and the con-
trolled features, preserving more local details. The CAMB can better capture the
spatial distortion information, guaranteeing the integrity of the recovered con-
tent [10,35,53]. To balance performance and computational cost, our QueryCDR
constructs a U-shaped rectification network [52] composed of CCMB and CAMB.
In the first three layers with larger feature maps, i.e., l = {1, 2, 3, 9, 10, 11},
CCMB is employed to learn more local texture details. In the remaining layers
with smaller feature maps, i.e., l = {4, 5, 6, 7, 8}, CAMB is utilized to capture
more global dependencies within the images.

Controllable Convolution Modulating Block (CCMB). When incorpo-
rating control conditions into the rectification network, existing methods [47,55]
fail to effectively balance the fusion ratio between original features and controlled
features. Directly using the controlled features or fusing them with original fea-
tures at a fixed ratio will degrade the quality of the rectified images. To harmo-
niously incorporate control conditions into the rectification process, we design
the CCMB, as shown in Fig. 2(a). CCMB can dynamically find an optimal ratio
to modulate the distorted features with control conditions.

Specifically, CCMB receives an input feature Fin ∈ RC×H×W and a control
condition Qc ∈ RC×H×W . Both of them are used to predict the fusion ratio.
Here we omit the layer information for brevity,

θ = CP(Fin, Qc), (3)

where CP(·) is the coefficient predictor composed of two fully connected layers,
takes the concatenation of Fin and Qc as input and predicts the fusion ratio θ.

Then, we perform element-wise multiplication ⊗ on Fin and Qc to yield the
controlled features Fc ∈ RC×H×W , which can be expressed as,

Fc = Fin ⊗Qc. (4)
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Finally, the input features Fin and controlled features Fc are combined in a
weighted sum according to the fusion ratio θ, illustrated as ψ(·) in Fig. 2(a),

Fout = ψ(Fc, Fin, θ) = θFc ⊕ (1− θ)Fin, (5)

where ⊕ represents the element-wise addition, and Fout ∈ RC×H×W is the final
output of CCMB.

Due to this dynamic modulation mechanism, CCMB achieves effective control
over the rectification process while preserving richer texture details.

Controllable Attention Modulating Block (CAMB). Due to the lack
of perception of global information, CNN-based networks struggle to learn long-
range dependencies, particularly the continuous and amorphous distortions preva-
lent in fisheye distortions [10, 42, 53]. In contrast, Transformer-based networks
effectively compensate for this, with their global attention mechanism [13,35].

Therefore, we propose the CAMB, as illustrated in Fig. 2(b). To optimally
leverage the control conditions given by DLQM, we designed the control-attention
mechanism, enabling CAMB to perceive the global spatial relationships in the
control conditions effectively. Specifically, we unfold and project the controlled
feature Fc (in Eq. (4)) as the query Q ∈ Rm×L, with the input feature Fin as the
key K ∈ Rm×L and value V ∈ Rm×L, where L = H×W represents the sequence
length, and m denotes the dimensions of the sequences. The control-attention is
described by the following,

Q =WQFc,K =WKFin,V =WVFin,

CTRL-ATTN(Q,K,V) = softmax(
QKT

√
m

)V,
(6)

where WQ,WK,WV ∈ Rm×C represent the projection matrices of the queries,
keys, and values, respectively. CTRL-ATTN(·) represents the control-attention
we proposed. The overall computation of CAMB can be formulated as follows,

Fa = CTRL-ATTN(LN(Q,K,V))⊕ Fin,

Fout = Conv1×1(FFN(LN(Fa))⊕ Fa),
(7)

where Fin means the input feature, Fa ∈ Rm×H×W and Fout ∈ RC×H×W are
the outputs of CTRL-ATTN(·) and CAMB, respectively. LN(·) denotes the layer
normalization [1]. FFN(·) stands for the feed-forward network composed of three
fully connected layers, which helps CAMB to focus on the global dependencies.

CAMB can discern the global mapping relationships within fisheye images,
ensuring rectification uniformity compared to the CNN-based networks.

3.4 Training Strategy

To guarantee the robust and stable controllable distortion rectification of Query-
CDR, we design a two-stage training strategy that combines coarse-grained dis-
tortion pre-training and fine-grained distortion fine-tuning.
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During the coarse-grained distortion pre-training phase, we choose the most
commonly used dataset [10,24,52,54] that only contains one degree of distortion
to train our QueryCDR. For clarity, we denote the distortion degree in this phase
as d. Correspondingly, only one query, denoted as Q, is used for training. The
optimization objective can be expressed as follows,

Lpre = Lr + Lm, (8)

where Lpre is the overall loss function for the pre-training phase. Lr denotes the
reconstruction loss,

Lr =
∥∥Idout − Idgt

∥∥
1
, (9)

where Idout and Idgt signifie the output result and ground truth, respectively. Lm

denotes the multi-scale loss,

Lm =

Z−1∑
j=1

∥S(Idgt, j)− C(F j
out)∥1, (10)

where S(·) represents the operation that down-samples the input Idgt by a factor
of 1/2j . Z represents the number of decoder’s layers, and we set Z to 6. F j

out

denotes the feature in j-th decoder layer. C(·) is 3× 3 convolution for decoding
the features into 3-channel RGB images. In this way, each feature map on the
decoder can be effectively supervised. The Idout can be obtained as,

Idout = QueryCDR(Idin, Q), (11)

where Idin represents fisheye images with distortion degree d as input. This way
can effectively boost the model stability and accelerate the convergence.

During the fine-grained distortion fine-tuning phase, we use the varying dis-
tortion degrees datasets to fine-tune our QueryCDR. Before training, We repli-
cate the weight of the query Q to the other queries to accelerate convergence on
other distortion degrees. Subsequently, we fine-tune our QueryCDR using fisheye
images with varying distortion degrees, and feeding corresponding queries into
QueryCDR for training at the same time. This allows the query set to efficiently
acquire diverse latent spatial relationships. The optimization objective can be
expressed as follows,

Ldi

fine = Ldi
r + Ldi

m, (12)

where Ldi

fine is the overall fine-tuning loss function for distortion degree di, i ∈
{1, 2, · · · , 9}, which is similar to the Lpre but calculated across different distor-
tion degrees. The Idi

out can be obtained as,

Idi
out = QueryCDR(Idi

in , Qi), (13)

where Idi
in denotes fisheye images with a distortion degree of di as input, Qi

denotes the query corresponding to di, i ∈ {1, 2, · · · , 9}.
With this two-stage training strategy, our QueryCDR can effectively utilize

only a small amount of varying distortion degrees data that is difficult to obtain,
to rapidly finish the training of our network.
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Table 1: Quantitative comparison (PSNR (dB)↑, SSIM ↑) on COCO [27] fisheye image
dataset with varying distortion degrees. Red indicates the best and blue indicates the
second best performance (best viewed in color).

Method PSNR

d1 d2 d3 d4 d5 d6 d7 d8 d9 Avg

SC [40] 10.05 11.59 11.81 11.03 11.50 10.19 11.11 10.19 9.14 10.73
DeepCalib [4] 10.00 10.69 11.01 11.19 11.28 11.46 11.45 11.13 11.11 11.04
Blind [23] 12.98 11.24 10.30 9.62 9.99 11.75 12.69 12.75 12.80 11.57
DR-GAN [24] 15.68 17.40 17.97 18.34 18.50 18.44 17.95 17.94 17.47 17.74
PCN [52] 14.93 17.43 18.43 18.86 18.86 18.88 18.74 17.35 18.26 17.97
DDA [54] 16.39 17.41 17.43 19.48 20.12 18.90 18.85 18.17 18.22 18.33
SimFIR [10] 16.57 17.88 18.43 18.97 19.31 19.28 19.19 18.65 18.48 18.53

QueryCDR 20.01 20.29 20.39 20.41 20.72 20.81 20.58 19.11 20.53 20.32

Method SSIM

d1 d2 d3 d4 d5 d6 d7 d8 d9 Avg

SC [40] 0.101 0.113 0.149 0.182 0.283 0.175 0.141 0.126 0.093 0.151
DeepCalib [4] 0.184 0.210 0.223 0.230 0.234 0.246 0.250 0.245 0.246 0.229
Blind [23] 0.308 0.244 0.199 0.176 0.194 0.296 0.367 0.395 0.420 0.289
DR-GAN [24] 0.295 0.330 0.339 0.344 0.344 0.332 0.314 0.312 0.299 0.323
PCN [52] 0.420 0.547 0.589 0.607 0.608 0.610 0.615 0.576 0.603 0.575
DDA [54] 0.455 0.589 0.592 0.620 0.675 0.626 0.619 0.564 0.581 0.591
SimFIR [10] 0.492 0.581 0.626 0.635 0.640 0.628 0.622 0.591 0.595 0.601

QueryCDR 0.643 0.665 0.668 0.677 0.688 0.699 0.692 0.656 0.693 0.676

4 Experiment

4.1 Experimental Settings

To demonstrate the effectiveness of our proposed QueryCDR, we followed the
existing works [10, 24, 52, 54], employed the four-parameter polynomial model
to synthesize fisheye images. We constructed synthetic datasets based on the
original images of COCO [27] and Places2 [62] datasets, respectively. Specifically,
for images with distortion degree d, 40,000 images were used for the pre-training
stage. And for images with varying distortion degrees di, i ∈ {1, 2, · · · , 9}, 18,000
images were used for the fine-tuning stage, and 3,600 images for testing. The
images were resized to 256×256 when fed into the network. For a fair comparison,
we followed existing works [10, 24, 52, 54] utilizing a batch size of 16 and the
Adam [19] optimizer with a learning rate of 1e-4.

4.2 Performance Evaluation

To evaluate the performance of our method, we retrained and validated existing
fisheye image rectification methods on synthetic fisheye datasets with 9 distor-
tion degrees. The methods can be summarized into three categories: traditional
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Fig. 4: Qualitative results on synthetic fisheye images.

method SC [40], regression-based methods DeepCalib [4] and Blind [23], and
generation-based DR-GAN [24], PCN [52], DDA [54] and SimFIR [10]. For a fair
comparison, we followed existing works [10,24,52,54] employing Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity (SSIM) to quantify performance.

Quantitative Results. Our performance comparisons are shown in Tab. 1.
Compared to existing methods, QueryCDR achieves the best performance across
all distortion degrees without retraining. It is because DLQM effectively utilizes
the control information in queries to guide the network in achieving varying
degrees of rectification. Additionally, the capability of CCMB and CAMB al-
lows for controlled rectification while obtaining high-quality results. Moreover,
we observe that even on images with distortion degree d5, which the existing
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Input PCN OursDR-GAN Input PCN OursDR-GAN

Input PCNDR-GAN Input PCN QueryCDR(Ours)DR-GANQueryCDR(Ours)

Fig. 5: Qualitative results on real-world fisheye images.

methods perform well [10, 24, 52, 54], QueryCDR still outperforms the second
best method [54] by 0.60 dB of PSNR and 0.013 of SSIM. This further demon-
strates the outstanding generalization ability of QueryCDR.

Qualitative Results. To further compare the visual qualities of different meth-
ods, we show the results rectified by QueryCDR and other rectification methods
in Fig. 4. It can be observed intuitively that other methods fail to effectively
rectify images with varying degrees of distortion. Particularly the objects in im-
ages, our QueryCDR maintains the accurate structure of objects across different
distortions. Furthermore, benefiting from the modulation capability of CCMB
and CAMB, QueryCDR preserves richer texture details after rectification.

In addition, to further demonstrate the generalization ability of QueryCDR,
we conducted experiments on real-world fisheye image datasets [57] in Fig. 5. De-
spite the disparities between synthetic and real-world datasets, our QueryCDR
still shows robust rectification capabilities, and preservers richer texture details.
These results further validate its practicality in real-world scenarios.

4.3 Ablation Study

In this section, we conduct ablation for different control conditions, and study
the effect of the controllable modulating blocks and the architecture setting.

Distortion-aware Learnable Query Mechanism (DLQM). To validate
the effectiveness of DLQM in controlling the rectification process, we imple-
mented different rectification networks controlled by scalar, fixed query, and our
learnable query in Tab. 2. When using scalar to control, the value of the scalar
increments with the distortion of the entire image. When using fixed query to
control, the parameters of the query are set to incremental values from 0 to 1
with the degree of distortion from the center to the edges. Following the settings
in Sec. 4.1, we use the learnable query Qi, i ∈ {1, 2, · · · , 9} to learn the distortion
distribution corresponding to di, i ∈ {1, 2, · · · , 9}.

We trained different methods using the same strategy as illustrated in Sec. 3.4,
the results are shown in Tab. 2 and Fig. 6. All three controllable methods out-
perform the uncontrollable method significantly at various degrees of distortion.
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Table 2: Performance comparison of different control methods.

Method PSNR

d1 d2 d3 d4 d5 d6 d7 d8 d9 Avg

W/o Control 14.93 17.43 18.43 18.86 18.86 18.88 18.74 17.35 18.26 17.97
Scalar 19.52 20.25 19.97 19.43 19.89 20.07 20.03 18.76 20.15 19.78
Fixed Query 20.13 20.03 20.14 19.88 20.16 20.25 20.16 18.74 19.84 19.93
Learnable Query 20.01 20.29 20.39 20.41 20.72 20.81 20.58 19.11 20.53 20.32

Input

Scalar

L-Query GT

Input Direct Use 𝐹𝑐 Fixed Ratio Dynamic Attention GT

F-Query Input L-Query GTF-Query

Fig. 6: Visual results of different
control mechanisms.

Input Scalar-based QueryCDR GT

Input Direct Use 𝐹𝑐 Fixed Ratio Dynamic Attention GT

Fig. 7: Visual results of different modulation
methods.

This is because the controllable mechanism effectively assists the rectification
network in distinguishing between different degrees of distortion, thereby enhanc-
ing the generalization capability of the rectification network. The improvement
brought by scalar demonstrates the crucial role of controllable mechanisms in
handling fisheye images with different degrees of distortion. The further enhance-
ment with fixed query validates the importance of employing higher-dimensional
control conditions for fisheye image rectification. Lastly, our tailored learnable
query significantly outperforms all other controllable methods, verifying the
unique superiority of our approach in controllable rectification.

Controllable Modulating Block. To demonstrate the capability of the CCMB
and CAMB in modulating input features with control conditions, we imple-
mented two comparison methods with different modulating approaches: one di-
rectly uses the controlled feature (in Eq. (4)), and the other adds controlled
feature and original feature in a fixed 1:1 ratio. We constructed different con-
trollable networks using each of these methods.

As shown in Tab. 3 and Fig. 7, retaining original features and fusing them
with a 1:1 ratio improved by 0.03 dB, highlighting the importance of preserving
original features. The dynamic modulation mechanism boosted performance by
0.06 dB, verifying its effectiveness in dynamic feature modulation. Furthermore,
leveraging the control-attention mechanism led to a performance improvement of
0.12 dB, demonstrating the superiority of CAMB for perceiving global distortion
distribution, and achieving better uniform global rectification.
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Table 3: Ablation study of different
modulation methods. Where Direct Use
Fc means directly using the controlled
feature Fc, Fixed Ratio means adding
controlled features and original features
in a 1:1 ratio, Dynamic Mechanism
means the CCMB and Attention Mech-
anism means the CAMB.

Method PSNR SSIM

Direct Use Fc 20.14 0.655
Fixed Ratio 20.17 0.658
Dynamic Mechanism 20.20 0.669
Attention Mechanism 20.26 0.671

Table 4: Ablation study of different net-
work architectures. Where xC + (11− x)A
denotes that the network uses CCMB in
the x layers with larger feature maps and
CAMB in the remaining 11− x layers with
smaller feature maps.

Method Flops(G) Param(M) PSNR SSIM

PCN [52] 12.305 35.637 17.97 0.575
11C+0A 12.736 37.701 20.20 0.669
8C+3A 13.383 46.398 20.27 0.665
6C+5A 12.353 43.244 20.32 0.676
4C+7A 12.538 46.994 20.31 0.670
0C+11A 15.190 51.795 20.26 0.671

Controllable Rectification Network Architecture. As described in Sec. 3.3,
rectification networks based on CCMB may ignore the long-range dependencies,
while those based on CAMB may ignore the texture details and also increase
computational costs. To strike a balance between these two architectures, We
incorporate CCMB into the layers with larger feature map size, and integrate
CAMB into the layers with smaller feature map size. To validate the effective-
ness of this hybrid architecture and find an optimal combination, we conducted
performance and computational cost comparisons between pure CCMB, pure
CAMB, and multiple hybrid networks, as shown in Tab. 4. Pure CAMB network
(i.e., Row 6) outperforms pure CCMB network (i.e., Row 2) in rectification per-
formance but incurs higher computational costs. Hybrid network architectures
effectively solve this problem, with higher performance and fewer parameters.
After a trade-off between performance and parameters, we empirically choose
the 6C + 5A hybrid architecture as our final model.

5 Conclusion

In this paper, we propose the Query-based Controllable Distortion Rectification
network for fisheye images (QueryCDR), which achieves controllable rectifica-
tion at different distortion degrees without retraining. In particular, we design a
series of learnable queries as control conditions to guide the rectification process.
Additionally, we design two different controllable modulating blocks, achieving
controllable rectification while improving image quality. Extensive experiments
have demonstrated the robustness and effectiveness of our QueryCDR. In the
future, it is expected to further rectify distortions of different degrees by auto-
controlling mechanisms to avoid human involvement. We believe our work pro-
vides an effective solution for fisheye camera applications.
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