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Crime-scene Shoeprints
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crime scene helps
investigators identify

suspects.
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Crime Scene Print Predicted Depth Maps
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- Compare crime-scene

shoeprints to depth maps from
large-scale, automatically
generated reference database of
tread images from online

retailers.




Training and Validation Datasets
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[1] Kortylewski et al. Unsupervised Footwear Impression Analysis and Retrieval from Crime Scene Data. In ACCVW 2014,
[2] Tibben et al. ShoeCase: A data set of mock crime scene footwear impressions. In Data in Brief 2023.



Methodology
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Data augmentation simulates crime

scene shoeprints.
- Occlusion - overlapping prints and quads
- Erasure - grainy nature of crime-scene
prints
- Noise - background clutter
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Generate partial prints by applying a
random mask on the simulated
crime scene prints.
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Modify ResNet50 to output spatial
features (remove pooling operation
at the end).

Access to corresponding locations
on shoe tread since training data,
reference database and validation
prints are globally aligned.



- Use a compressed mask of size
HxW to mask out irrelevant
portions of the spatial features.

Methodology
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Qualitative Results

We visualize the top 10 retrievals of
CriSp on val-FID (row1-5) and val-
ShoeCase (row 6).

CriSp retrieves positives matches early
even with very limited visibility or
severe degradation.
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Quantitative Comparison to SOTA

Comparison with state-of-the-art
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MCNCC: Kong et al. Cross-domain image matching with deep feature maps. IJCV 2019

SupCon: Khosla et al. Supervised contrastive learning. In NeurlPS 2020

SketchLVM: Sain et al. Clip for all things zero-shot sketch-based image retrieval, fine-grained or not. CVPR 2023.
ZSE-SBIR: Lin et al. Zero-shot everything sketch-based image retrieval, and in explainable style. CVPR 2023.
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