

EUROPEAN CONFERENCE ON COMPUTER VISION

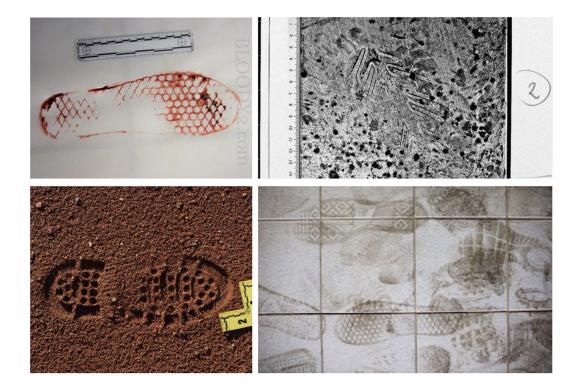
M I L A N O

CriSp: Leveraging Tread Depth Maps for Enhanced Crime-Scene Shoeprint Matching

Samia Shafique¹, Shu Kong^{2*}, and Charless Fowlkes^{1*}

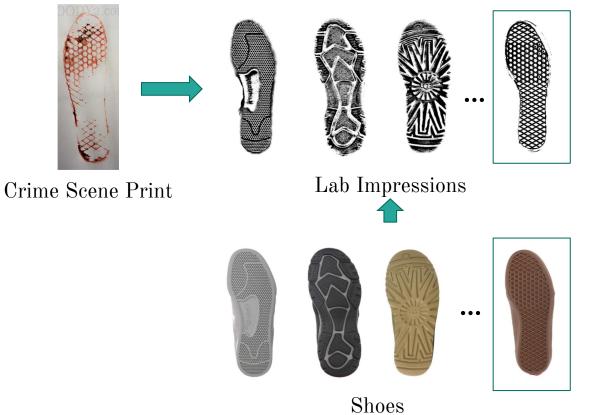
¹University of California, Irvine, ²Texas A&M University

Crime-scene Shoeprints



- Examining evidence from a crime scene helps investigators identify suspects.
- Challenge in analyzing
 - Noisy and degraded
 - Occluded
 - Partial
 - Occur across various mediums

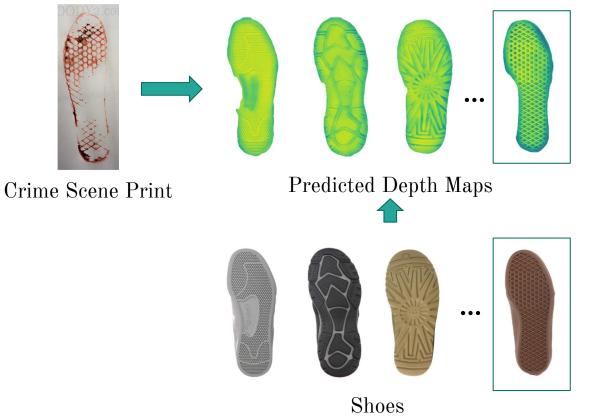
Matching Print to Shoe



Previous work

- Compare crime-scene shoeprints to prints in small, manually curated reference database.

Matching Print to Shoe



Previous work

- Compare crime-scene shoeprints to prints in small, manually curated reference database.

CriSp

Compare crime-scene shoeprints to depth maps from large-scale, automatically generated reference database of tread images from online retailers.

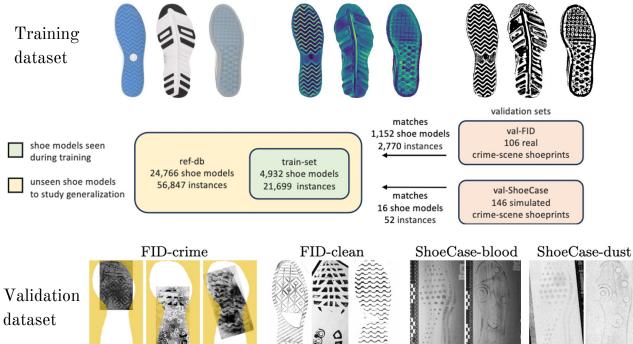
Training and Validation Datasets

predicted depth

predicted print

tread image

Training dataset



Training data: Tread images with *predicted* depth maps and prints.

Reference Database:

Superset of training data.

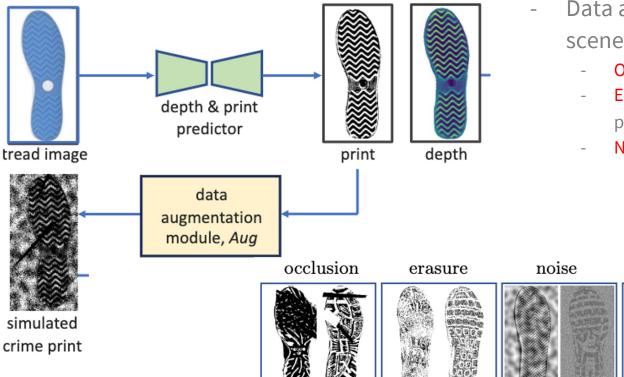
Validation sets:

_

- val-FID: real crimescene shoeprints from FID300 [1].
- val-ShoeCase: simulated crime-scene shoeprints from ShoeCase [2].

[1] Kortylewski et al. Unsupervised Footwear Impression Analysis and Retrieval from Crime Scene Data. In ACCVW 2014. [2] Tibben et al. ShoeCase: A data set of mock crime scene footwear impressions. In Data in Brief 2023.

Methodology

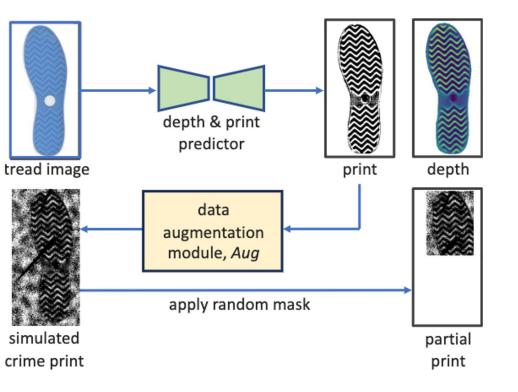


- Data augmentation simulates crime scene shoeprints.
 - Occlusion overlapping prints and quads

simulated crime-scene shoeprints \hat{S}

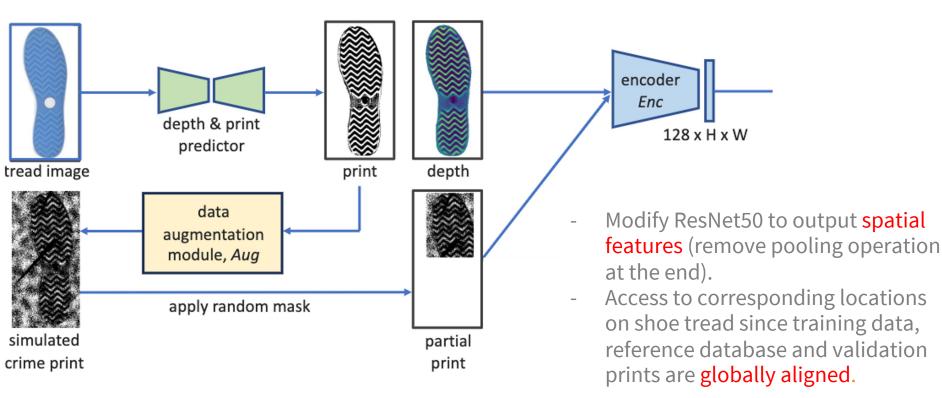
- Erasure grainy nature of crime-scene prints
- Noise background clutter

Methodology



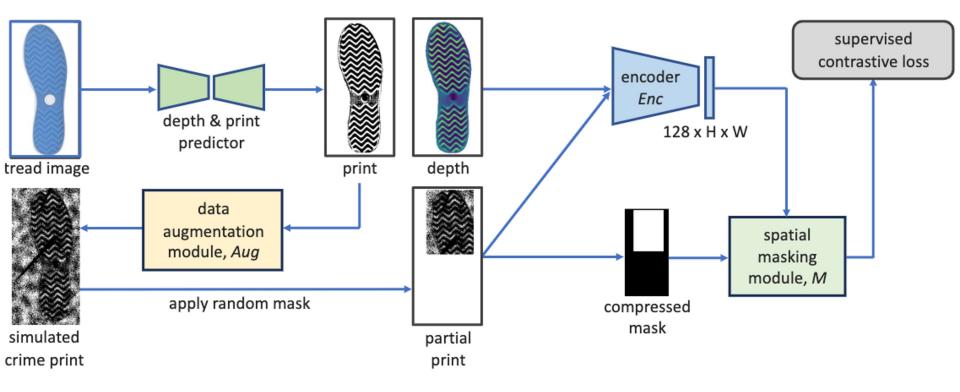
Generate partial prints by applying a random mask on the simulated crime scene prints.

Methodology



Use a compressed mask of size HxW to mask out irrelevant portions of the spatial features.

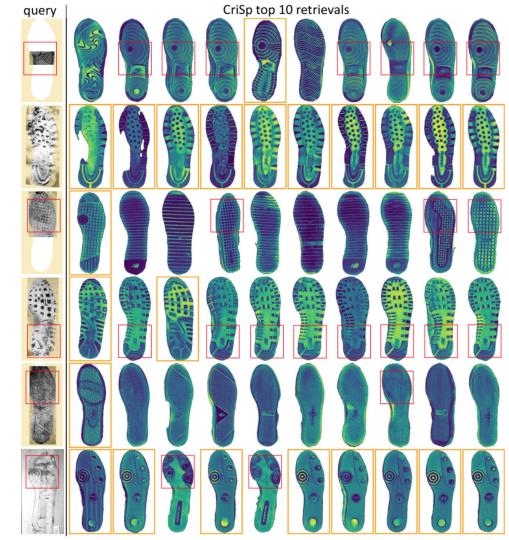
Methodology



Qualitative Results

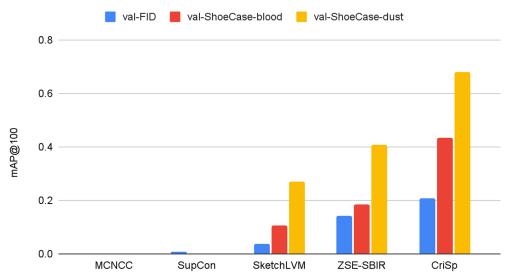
We visualize the top 10 retrievals of CriSp on val-FID (row1-5) and val-ShoeCase (row 6).

CriSp retrieves positives matches early even with very limited visibility or severe degradation.



Quantitative Comparison to SOTA

Comparison with state-of-the-art



We compare to SOTA on

automated shoeprint matching (MCNCC) and image retrieval tailored to this task (SupCon, SketchLVM, ZSE-SBIR)

MCNCC: Kong et al. Cross-domain image matching with deep feature maps. IJCV 2019 SupCon: Khosla et al. Supervised contrastive learning. In NeurIPS 2020 SketchLVM: Sain et al. Clip for all things zero-shot sketch-based image retrieval, fine-grained or not. CVPR 2023. ZSE-SBIR: Lin et al. Zero-shot everything sketch-based image retrieval, and in explainable style. CVPR 2023.

Thank You!