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* Its prevalence is well-known, even in security/safety critical applications.
» Deep learning-based face recognition.
» Autonomous driving.

* In such applications, “provable” defense of them is necessary!



« Goal: Find a condition that there is no adversarial examples within a noise bound €.
» There is no (even computationally unbounded) adversarial attacks for the given input.
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(4) Receive & Evaluate

« Atypical approach? Analyze the range of logit value of the adversarial example.



* Due to its attractive feature, several efforts have been made for achieving this.
» Figure from a SoK paper on certifiable robustness [LXL23].
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All of them are designed for
Image Classification Tasks!
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Why Itis Hard for Face Recognition?
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 FR model utilizes metric learning & It is deployed in open-set setting.
» Let the FR model catch up “implicit” distance relationships between faces
» Feature vectors are represented as unit vectors; cosine similarity (or, angular distance) is used.
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* There are no predetermined “classes” or “logit” values.
» Previous certifiable robustness techniques for image classification is no longer available... ®



First certifiable robustness result for “open-set” face recognition scenarios

Main Theorem: If the FR model is 1-Lipschitz in £2, then it is certifiably robust.
» Same condition as image classification tasks [TSS18, SSF21].
» Novel proof technique tailored for dealing with angular distance.

Careful analysis on the certified radius (upper bound of the size of noise)
» We found that the certified radius is proportional to the norm of the feature vector.
» We also derived the upper bound of the achievable certified radius.

Proof of concept implementation & empirical verification
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