

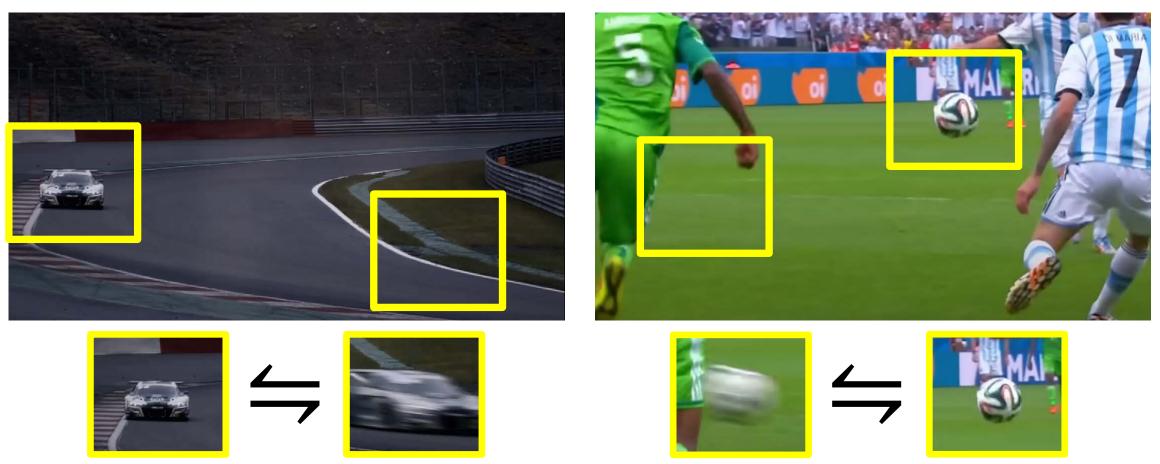
Retrieval Robust to Object Motion Blur

European Conference on Computer Vision (ECCV) 2024

Rong Zou¹, Marc Pollefeys^{1,2}, Denys Rozumnyi^{1,3} ¹ETH Zürich, ²Microsoft, ³Czech Technical University in Prague

Motivation

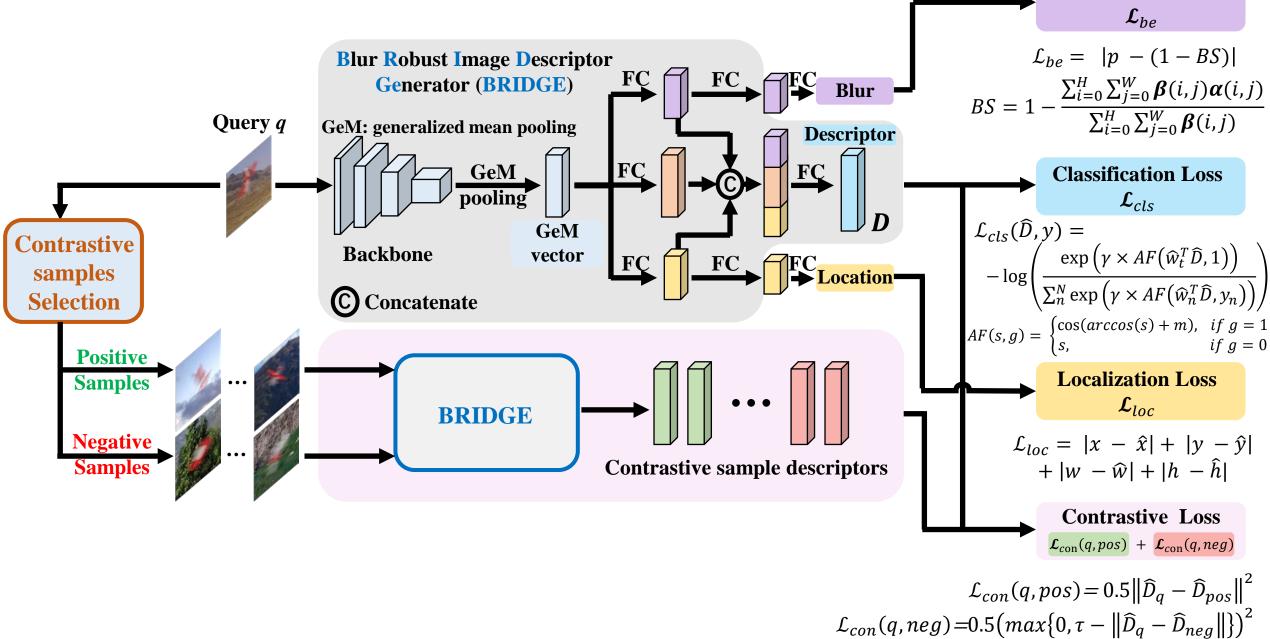
> Dynamic objects often appear blurred in images



> Robust object retrieval in the presence of motion blur has practical significance

Goal: create blur-robust image representations for bidirectional matching of motionblurred objects and their deblurred counterparts

Method



Blur Estimation Loss

Datasets – Synthetic

- No existing dataset for this novel retrieval task
- > We developed a simulator to generate motion-blurred data under controlled conditions
- Simulating 1,138 objects from 39 categories moving along random trajectories
- > Capturing images with different camera exposure time in the simulator
- \succ Each image is assigned a Blur Level (BL) according to its Blur Severity (BS): $BL = \lceil 10 \cdot BS \rceil$
- > Examples:

Same object, different trajectories

Same category, different objects (intra-class similarity)

Different categories of objects
 with similar textures (inter-class similarity)

Datasets – Synthetic

> Distractors: 1,560 objects from the same categories to increase retrieval difficulty



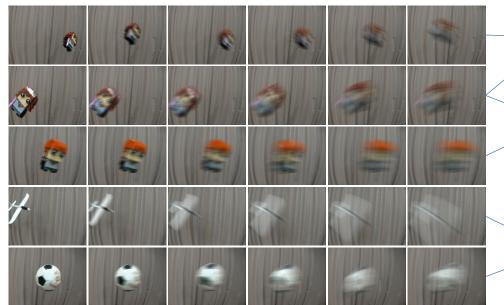
Red difficult distractors

Green

positives in database (top: motion-blurred bottom: sharp)

Datasets – Real

- > We recorded high-frame-rate (240fps) videos of objects moving along random trajectories
- 35 carefully selected objects, ensuring a balanced difficulty in terms of both intra- and inter-class similarity; None of them are in synthetic data
- Averaging different numbers of consecutive frames to obtain images with various amounts of motion blur
- Each real image is manually assigned a Blur Level based on the perceived blur (BL^r, r denotes real data)
- \succ Examples: $BL^r \ 1 \ BL^r \ 2 \ BL^r \ 3 \ BL^r \ 4 \ BL^r \ 5 \ BL^r \ 6$



Same object, different trajectories

Same category, different objects (intra-class similarity)

Different categories of objectswith similar textures (inter-class similarity)

Datasets – Statistics

 \succ Statistics of synthetic evaluation data for different BLs

Dataset	# Total Imagas	# images each BL							
	# Total Images	1	2	3	4	5	6		
Query	20,995	4,288	3,932	4,078	4,089	2,930	1,678		
Database	91,621	18,871	17,508	17,888	18,029	12,546	6,779		
1M Distractors	1,091,939	214,364	177,869	222,542	235,662	149,828	91,674		

 \succ Statistics of real evaluation data for different *BL*s:

Dataset	# Total Imagos	# images each BL ^r							
	# Total Images	1	2	3	4	5	6		
Query	2,753	612	620	561	396	315	249		
Database	10,340	1,923	1,803	2,080	1,745	1,375	1,414		

Results — Quantitative on Synthetic (+1M distractors)

- > All methods are retrained on the same synthetic data
- Metric: mean average precision (mAP) of top 100

Method	mAP (all	mAP (subset of queries for each BL)							
Method	queries)	1	2	3	4	5	6		
DELG [Cao, ECCV 2020]	68.19	73.64	75.40	73.34	68.05	58.28	42.46		
DOLG [Yang, ICCV 2021]	69.97	75.75	77.47	75.01	70.10	60.01	42.49		
Token [Wu, AAAI 2022]	70.65	75.32	77.66	75.51	70.24	61.19	48.05		
Ours-sharp	32.64	71.93	43.88	27.18	15.41	7.94	4.27		
Ours	84.09	88.74	89.56	87.68	84.41	76.89	62.42		

 \succ The database contains images of all blur levels (*BL* 1 to 6)

Results — Qualitative on Synthetic (+1M)

> Illustration of retrieval difficulty in terms of intra-class similarity

Results — Qualitative on Synthetic (+1M)

> Illustration of retrieval difficulty in terms of inter-class similarity



Results — Quantitative on Real

> Metric: mean average precision (mAP) of all retrieved images

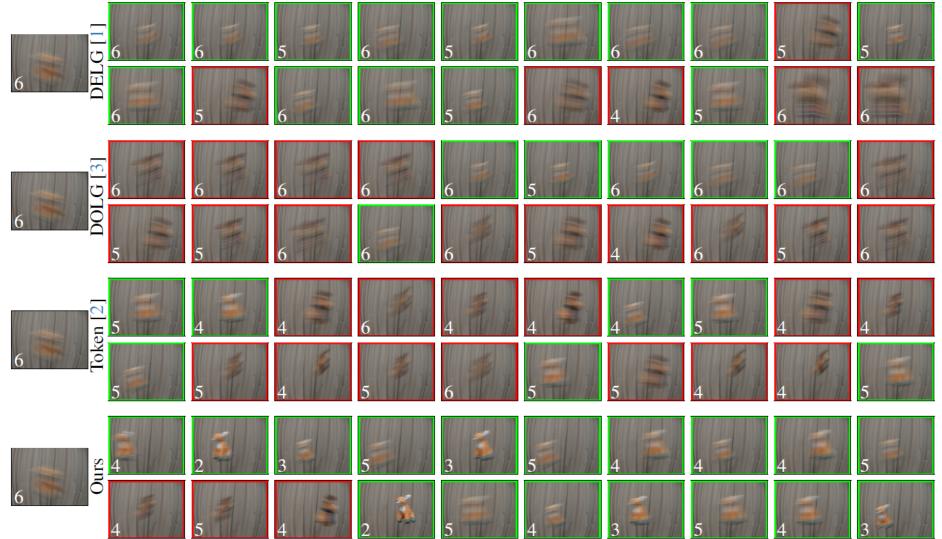
Method	mAP (all queries)	mAP (subset of queries for each BL^{r})							
Method		1	2	3	4	5	6		
DELG [Cao, ECCV 2020]	54.82	49.13	63.43	57.25	55.01	53.77	42.92		
DOLG [Yang, ICCV 2021]	54.64	43.93	60.59	58.36	59.06	58.58	45.78		
Token [Wu <i>,</i> AAAI 2022]	43.33	38.71	47.08	50.79	46.44	42.71	24.43		
Ours-sharp	40.24	49.55	45.02	41.33	33.23	29.40	27.91		
Ours	62.88	57.50	70.38	66.77	63.18	64.48	46.14		

 \succ The database contains images of all blur levels (BL^r 1 to 6)

> All methods are trained on synthetic data and evaluated on real data without finetuning

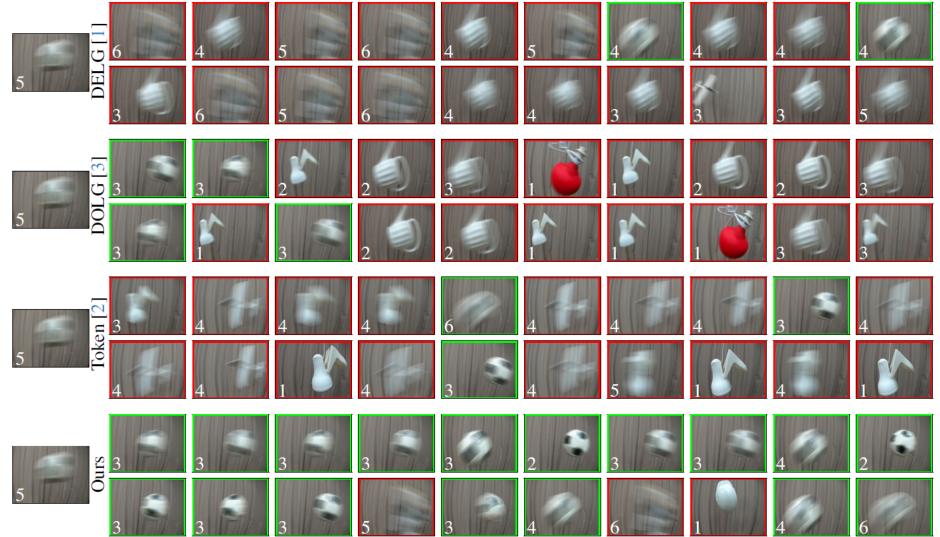
Results — Qualitative on Real

> Illustration of retrieval difficulty in terms of intra-class similarity



Results — Qualitative on Real

> Illustration of retrieval difficulty in terms of inter-class similarity



Results — Ablation Study on Synthetic

> Ablation study on loss components

ſ	ſ	ſ	ſ	mAP (all	mAP (subset of queries for each BL)						
\mathcal{L}_{con}	\mathcal{L}_{con} \mathcal{L}_{cls} \mathcal{L}_{cls}	\mathcal{L}_{be}	Lloc	queries)	1	2	3	4	5	6	
\checkmark	×	×	×	78.13	80.51	81.70	81.16	79.20	73.93	61.24	
\checkmark	X	¦ √	×	81.66	83.49	85.01	84.43	82.69	77.64	67.08	
\checkmark	X	×	\checkmark	85.94	87.54	88.25	87.83	86.52	83.08	75.58	
\checkmark	X	√	\checkmark	87.48	88.69	89.89	89.40	88.24	84.97	76.74	
× –	~~	` <mark>` X</mark>	×	78.73	81.53	82.97	82.83	$7\overline{9}.\overline{8}6$	$7\overline{2.93}$	59.00	
×	\checkmark	, 1 √	×	83.67	85.19	87.56	87.40	85.10	79.22	65.93	
×	\checkmark	×	\checkmark	88.74	89.89	90.91	90.88	89.75	86.07	77.67	
×	\checkmark	ı ↓ ✓	\checkmark	91.23	92.02	93.16	93.09	91.97	89.00	82.27	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~	`  <b>_ X</b> _	×	85.06	$-87.4\overline{2}$	88.29	87.66	85.85	81.20	69.96	
$\checkmark$	$\checkmark$	, I <b>√</b>	×	87.17	89.03	90.03	89.55	88.07	83.91	73.48	
$\checkmark$	$\checkmark$	×	$\checkmark$	90.39	91.85	92.45	92.14	91.20	88.20	79.36	
$\checkmark$	$\checkmark$	i √	$\checkmark$	91.78	93.05	93.48	93.14	92.25	90.20	82.86	

# Application to real-world video data

- > We extracted 190 images of the same ball from a YouTube soccer video as query & database
- Adding 4,600 hard distractors: 4,431 sports ball images from MSCOCO [Lin, ECCV 2014]; 169 images of a different ball extracted from the same video
- Query

Top 20 retrieved images (red: negative, green: positive)



Illustration of our method's effectiveness in handling various blur conditions and complex and diverse backgrounds in the real world
<u>https://www.youtube.com/watch?v=U8WCRz0Yh4Q 15</u>

## Conclusion

- We introduce a novel retrieval task involving motion blur; this task holds practical significance with applications in real-world dynamic scenarios.
- We present the first method specifically designed to tackle this task, which is trained with specialized loss functions tailored to improve model's understanding of motion blur.
- We introduce a new benchmark featuring synthetic and real-world datasets specifically constructed for this task. The datasets are large-scale, meticulously processed, and directly applicable for future research in blur retrieval.
- We conducted extensive experiments, showing that our method achieves higher mAP and exhibits superior robustness to motion blur compared to SOTA standard retrieval methods.

# Thank you!