

Dissolving Is Amplifying: Towards Fine-Grained Anomaly Detection

Jian Shi¹ · Pengyi Zhang² · Ni Zhang² · Hakim Ghazahi¹ · Peter Wonka¹

¹ KAUST · ² NEC Laboratories China

Background: Issues In Medical Anomaly Detection

Healthy images tend to be quite similar, while unhealthy images can appear in a wide variety of forms.

Anomaly Detection in Medical Imaging

Dissolving Is Amplifying: Towards Fine-Grained Anomaly Detection

in medical imaging of

Medical imaging often contains critical fine-grained features, such as tumors or hemorrhages, crucial for diagnosis yet potentially too subtle for detection with conventional methods

Dissolving Transformations w/ Diffusion Models

Employs dissolving transformations to detect subtle features, such as tumors, that traditional methods often overlook.

Amplifying Framework For Anomaly Detection

The DIA framework is designed to improve fine-grained anomaly detection in medical imaging, providing a robust solution to identify irregularities.

Significant AUC Improvement

Demonstrated a substantial AUC improvement of 18.40% over baseline methods across six diverse medical datasets.

Challenge: How to focus on fine-grained details in medical images unsupervisedly?

Our Approach:

Learn the differences

Remove the fine-features from the image & **Compare with the original image** &

Key Technology:

Dissolving Transformations w/ Diffusion Models

Regular Diffusion:

Dissolving Transformation:

Instead of generating images by progressive denoising, we apply reverse diffusion in **a single step**.

$$\hat{x}_{t\to 0} = \sqrt{\frac{1}{\bar{\alpha}_t}} \cdot x - \sqrt{\frac{1}{\bar{\alpha}_t}} - 1 \cdot \epsilon_\theta(x)$$
$$\bar{\alpha}_t := \Pi_{s=1}^t \alpha_s \text{ and } \alpha_t := 1 - 1$$

(,t),

 β_t ,

Dissolving Transformation Effects

Instead of generating images by progressive denoising, we apply reverse diffusion in a single step.

(e) t = 400(c) t = 100(d) t = 200

Key Technology:

Fine-Grained Contrastive Learning

respectively.

The red area contains the newly introduced negative pairs with dissolving transformations.

The proposed contrastive loss:

Visualization of the target similarity matrix (K = 2 with two samples in a batch). The white, blue, and lavender blocks denote the excluded, positive, and negative pairs,

$$\frac{1}{\{x_+\}|} \sum \ell_{i,j} \cdot \begin{cases} 0 & \mathbb{1}_{i,j} \in \{x_-\} \\ 1 & \mathbb{1}_{i,j} \in \{x_+\} \end{cases},$$

The DIA Framework

The DIA framework is designed to improve fine-grained anomaly detection in medical imaging, providing a robust solution to identify irregularities.

Our framework amplifies fine-details by dissolving the fine details.

Significant AUC Improvement

Demonstrated a substantial AUC improvement of 18.40% over baseline methods across six diverse medical datasets.

Methods		Extra Training Data	Pnuemonia MNIST	Breast MNIST	SARS- COV-2	Kvasir Polyp	Retinal OCT	APTOS 2019
Reconstruction-based N	fethods							
GANomaly ‡UniAD [60]	(ACCV 18) (NeurIPS 22)	××	$\substack{0.552 \pm 0.01 \\ 0.734 \pm 0.02}$	$\substack{0.527 \pm 0.01 \\ 0.624 \pm 0.01}$	$\left \begin{array}{c} 0.604 \pm 0.00 \\ 0.636 \pm 0.00 \end{array} \right $	$_{0.604\pm0.00}^{0.604\pm0.00}_{0.724\pm0.03}$	$_{0.505\pm0.00}^{0.505\pm0.00}_{0.921\pm0.01}$	$_{0.874\pm0.00}^{0.601\pm0.01}$
Normalizing flow-based	Methods							
‡CFlow [25] UFlow [52] FastFlow [61]	(WACV 22)	××××	$\substack{0.537 \pm 0.01 \\ 0.792 \pm 0.01 \\ 0.827 \pm 0.02}$	$\substack{0.647 \pm 0.01 \\ 0.631 \pm 0.01 \\ 0.667 \pm 0.01}$	$ \begin{smallmatrix} 0.622 \pm 0.01 \\ 0.653 \pm 0.02 \\ 0.700 \pm 0.01 \end{smallmatrix} $	$\substack{0.852 \pm 0.03 \\ 0.562 \pm 0.02 \\ 0.516 \pm 0.03}$	$\substack{0.712 \pm 0.02 \\ 0.630 \pm 0.01 \\ 0.744 \pm 0.01}$	$\substack{0.452 \pm 0.01 \\ 0.731 \pm 0.00 \\ 0.772 \pm 0.02}$
Teacher-Student Metho	$^{\rm ds}$							
KDAD [45] RD4AD [18] †Transformly [17] ‡EfficientAD [5]	(CVPR 21) (CVPR 22) (CVPR 22) (CVPR 24)	× < < >	$\substack{0.378 \pm 0.02 \\ 0.815 \pm 0.01 \\ 0.821 \pm 0.01 \\ 0.686 \pm 0.02}$	$\begin{array}{c} 0.611 {\pm} 0.02 \\ \textbf{0.759} {\pm} 0.02 \\ 0.738 {\pm} 0.04 \\ 0.696 {\pm} 0.03 \end{array}$	$\begin{array}{c c} 0.770 \pm 0.01 \\ 0.842 \pm 0.00 \\ 0.711 \pm 0.00 \\ 0.711 \pm 0.02 \end{array}$	$\begin{array}{c} 0.775 {\pm} 0.01 \\ 0.757 {\pm} 0.01 \\ 0.568 {\pm} 0.00 \\ 0.753 {\pm} 0.03 \end{array}$	$\begin{array}{c} 0.801 \pm 0.00 \\ \textbf{0.996} \pm 0.00 \\ 0.824 \pm 0.01 \\ 0.826 \pm 0.02 \end{array}$	$\substack{ 0.631 \pm 0.01 \\ 0.921 \pm 0.00 \\ 0.616 \pm 0.01 \\ 0.763 \pm 0.02 }$
Memory Bank-Based M	ethods							
CFA (IEE PatchCore	E Access 22) (CVPR 22)	××	$_{0.737\pm0.01}^{0.716\pm0.01}$	$_{0.678\pm0.02}^{0.678\pm0.02}_{0.700\pm0.02}$	$ \begin{smallmatrix} 0.424 \pm 0.03 \\ 0.654 \pm 0.01 \end{smallmatrix} $	$_{0.354 \pm 0.01}^{0.354 \pm 0.01}_{0.832 \pm 0.01}$	$_{0.472 \pm 0.01}^{0.472 \pm 0.01}_{0.758 \pm 0.01}$	$_{0.796\pm0.01}^{0.796\pm0.01}_{0.583\pm0.01}$
Contrastive Learning-B	ased Metho	ods						
Meanshift [41] CSI [51] Baseline	(AAAI 23) (NeurIPS 20)	××	$0.818 {\scriptstyle \pm 0.02 \\ \scriptstyle 0.834 {\scriptstyle \pm 0.03 }}$	$0.648 {\scriptstyle \pm 0.01 \\ \scriptstyle 0.546 {\scriptstyle \pm 0.03 }}$	$\left \begin{array}{c} 0.767 \pm 0.03 \\ 0.785 \pm 0.02 \end{array} \right $	$0.694{\scriptstyle \pm 0.05 \\ 0.609{\scriptstyle \pm 0.03 }}$	$0.438 {\scriptstyle \pm 0.01 \\ 0.803 {\scriptstyle \pm 0.00 }}$	$0.826{\scriptstyle \pm 0.01 \\ 0.927{\scriptstyle \pm 0.00 }}$
DIA Ours	0	×	0.903±0.01	$0.750{\scriptstyle\pm0.03}$	0.851±0.03	0.860±0.04	0.944 ± 0.00	0.934 ± 0.00

Thanks for Listening!

