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Introduction

Due to the absence of source supervision, applying the Mean Teacher
(MT) framework in Source-Free Object Detection (SFOD) encounters
significant training instability. We identify two primary issues:

@ Inopportune updates of the teacher model from the student
model: Uncontrolled degradation of the teacher model.

@ The student model’s tendency to replicate errors from incorrect
pseudo labels: Leading to it being trapped in a local optimum.

— Both factors contribute to a detrimental circular dependency, resulting
in rapid performance degradation in recent self-training frameworks.
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Figure: The training curves of different Mean Teacher training strategies on the
validation set of Cityscapes — Foggy Cityscapes under the SFOD setting. These
varied strategies consistently show a degradation phenomenon: the teacher model
gradually degrades due to inappropriate updates from the student model, while
the student model experiences performance deterioration due to inaccurate

pseudo labels.
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Our Contributions

To tackle the above challenges, we proposed:

e Dynamic Retraining-Updating (DRU) mechanism To actively
manage the student training and teacher updating processes to
achieve co-evolutionary training.

o Historical Student Loss To mitigate the influence of incorrect
pseudo labels generated by the deteriorating teacher model.
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Method Overview

Our proposed DRU method aligns with the structure of the MT framework.

Re-initialize

Conventional MT Proposed DRU

Figure: The comparison of the conventional Mean Teacher (MT) framework (left)
and our Dynamic Retraining-Updating (DRU) method (right). Left: In MT, the
teacher model is continuously updated by a fixed interval m (m =1 or

m =s,(s > 1)). Right: In DRU, the student model is dynamically retrained and
the teacher model is dynamically updated based on prediction feedback.
Additionally, the current student model is further supervised by the historical
student model.
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Training Process

Algorithm 1 Dynamic Retraining-Updating training process

Input: Teacher model G2, student model G‘gt“, unlabeled target data Dy, uncertainty feedback
U, and meta-iteration M
Output: Optimized teacher model G%‘m
1: Empty buffer Dy;.; Copy G5t as Ggf:ﬁ; Index i = 0
2: for image batch x; in Dy do
s Update Gt with a, Gt““ and G’t“ & with Historical Student Loss
4 Append xp, to Dy i + +
5 if i« < M then
&

if U[G(Dps)] < U[G“t" (Dpis)] then > Student evolved
7: Update thﬂ with Gt”‘ and Gt > Teacher Dynamic Updating
8: Reset D}m, Copy Ggf“ as G;f:t' i =0
9: else > Student trapped in a local optimum
10; Reinitialize G’t“ with G““ and G;:i‘it > Student Dynamic Retraining
11: Reset Dy,;s; Copy G5 as Ggf;it; i=0

12: return Gg““
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Method Architecture
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Figure: Overview of Dynamic Retraining-Updating (DRU), which is built upon the
Mean Teacher framework. DRU employs dynamic retraining of the student model
and dynamic updating of the teacher model based on the student’s evolution

assessment. The student model is further supervised by Historical Student Loss
Lpis-
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Experimental Results

| Method | Detector | city2foggy | city2bdd | sim2city
‘ Source Only ‘ Deformable DETR ‘ 29.5 ‘ 29.1 ‘ 48.9
TDD Faster R-CNN 43.1 33.6 53.4
<Dt PT Faster R-CNN 42.7 34.9 55.1
) O2?net Deformable DETR 46.8 30.5 54.1
MTTrans Deformable DETR 434 33.7 57.9
SED(Mosaic) Faster R-CNN 335 29.0 43.1
S| A’SFOD Faster R-CNN 35.4 31.6 44.0
= PETS Faster R-CNN 35.9 313 57.8
Ours Deformable DETR 43.6 36.6 58.7

Table: Results of different UDA and SFOD methods for three benchmarks.
“Source Only” refers to the source-trained model.
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Modules Analysis

Src MT MIC Lys DRU | mAP  gain
v 295

v oV 374 479
v v 398 +10.3
v v 413  +11.8
v v v | 409 +11.4
v Vv v v v 436 +141

Table: Ablation studies of adding modules to MT framework on Cityscapes —

Foggy Cityscapes. “Src” denotes the Source Only trained model. “MT"

represents the Mean Teacher baseline. “MIC”, "L, and “DRU" denote the
Masked Image Modeling, Historical Student Loss, and Dynamic

Retraining-Updating, respectively.
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Training Stability

Cityscapes — Foggy Cityscapes
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Figure: (a), (b), (c) The training curves for adding modules to MT on Cityscapes
— Foggy Cityscapes. (d) The training curves of our method on Sim10k —

Cityscapes.

Trinh Le Ba Khanh et al. (SKKU)

DRU




Conclusion

@ Investigate the causes of training instability of the MT framework for
the SFOD.

@ Propose the Dynamic Retraining-Updating mechanism and
Historical Student Loss.

@ DRU significantly enhances the stability and adaptability of the
self-training paradigm.
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Thank you!

Project page: https://github.com/Ibktrinh/DRU
Contact: trinhlbk@skku.edu
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