

ViC-MAE: Self-Supervised Representation Learning from Images and Video with Contrastive Masked Autoencoders

<u>Video is an unrepresented category in foundation models</u>

performed on these images?

GPT4-v answers Rock **Climbing** when the action is **Abseiling**

- There is discrepancy in the way we train LLMs (using autoregression, *masking*) vs, how we train vision models (*contrastive learning*) • There is no unified approach to model video data that has been shown
- to scale and produce better results than just *averaging over frames*.
- **Image-to-video** transfer learning is very common, But the latter, video-to-image transfer learning has not been very successful with models reaching <50% accuracy.

ViC-MAE: Visual Contrastive Masked Auto-Encoders

Jefferson Hernandez¹, Ruben Villegas², Vicente Ordonez¹ ¹Rice University ²Google DeepMind

<u>ViC-MAE uses image and video data better, and scales better than other methods</u>

<u>ViC-MAE is a powerful method to model images and video data</u>

Method		Arch	Pre-training Data	In-Domain		Out-of-Domain		Model		Pre-train.	Food CIFAR10 CIFAR1(Birdsnap	SUN397	VOC2007	DTD (Caltech101
		111 0111		IN1K	K400	Places-365	SSv2	<u>ں</u> MAE [[34] ‡	K400	74.54	94.86	79.49	46.51	64.33	83.07	78.01	93.28
q	ViT [23] <i>ICML'20</i>	ViT-B	IN1K	82.3	68.5	57.0	61.8		[34] ‡	MiT K400	76.23	94.47 03.64	79.50	47.98	65.32	83.46 82.74	78.21	93.08
/ise	ViT [23] <i>ICML'20</i>	ViT-L	IN1K	82.6	78.6	58.9	66.2		ΛE (ours)	MiT	77.30	93.04	70.88	47.00	65.64	84 77	70.00	92.21
duperv	COVeR [86] $arXiv'21$	TimeSFormer-SF	L JFT-3B+ K400+ MiT + IN1K	86.6	87.2	-	70.9		AL (Ours)	11111	11.39	94.92	19.00	40.21	05.04	04.11	19.21	90.00
	OMNIVORE [30] CVPR'22	ViT-B	IN1K + K400 + SUN RGB-D	84.0	83.3	59.2	68.3	$_{\odot}$ MAE [[34]	IN1K	77.5	95.0	82.9	49.8	63.2	83.3	74.5	94.8
01	OMNIVORE [30] CVPR'22	ViT-L	IN1K + K400 + SUN RGB-D	86.0	84.1			📱 Omni N	MAE [29]	$\mathrm{SSv2}\mathrm{+IN1K}$	76.2	94.2	82.2	50.1	62.6	82.7	73.9	94.4
	TubeViT [63] <i>CVPR'23</i>	ViT-B	m K400 + IN1K	81.4	88.6			L. ViC-MA	AE (ours)	IN1K+K400	81.9	95.6	85.4	52.8	67.3	84.2	76.8	94.9
	TubeViT [63] <i>CVPR'23</i>	ViT-L	K400 + IN1K	_	90.2		76.1	>ViC-MA	AE (ours)]	K710+MiT+IN1K	82.9	96.8	86.5	53.5	68.1	85.3	77.8	96.1
	MAE [34] CVPR'22	ViT-B	IN1K	83.4	_	57.9	59.6					. 1 1	- •					
	MAE [34] CVPR'22	ViT-L	IN1K	85.5	82.3	59.4	57.7		Ablations									
	ST-MAE [26] NeurIPS'22	ViT-B	K400	81.3	81.3	57.4	69.3											
	ST-MAE [26] NeurIPS'22	ViT-L	K400	81.7	84.8	58.1	73.2	(a) A	blation	on frame sepa-	Ablati	on on	(c) A	Ablation	n on d	different		
р	VideoMAE [72] NeurIPS'22	ViT-B	K400	81.1	80.0	_	69.6	ratio	n . 0: sam	ple same frame,	type . The hyperparameter λ is				augmentations. We use a com-			
rise	VideoMAE [72] NeurIPS'22	ViT-L	K400	_	85.2	_	74.3	D: dis	stant san	appling, and > 0	set	set to 0.025 and introduced us-			bination of different color and			
erv	OmniMAE [29] CVPR'23	ViT-B	m K400 + IN1K	82.8	80.8	58.5	69.0	Contin	luous san	npning.	ling a schedule.			spatial augs.				
Self-Sup	OmniMAE [29] CVPR'23	ViT-L	m K400 + IN1K	84.7	84.0	59.4	73.4			I N-4 1V			(Q /·		NT / 1TZ
	VIC-MAE	ViT-L	K400	85.0	85.1	59.5	73.7	Frame	e separati	on ImageINet-IK	Po	Pooling type Top-1 Top-5				Color Spatial ImageNet-IK		
	VIC-MAE	ViT-L	MiT	85.3	84.9	59.7	73.8			Top-1 Top-5		GeM	GeM 66.9	2 85.50 85.59	Augn	n. Augin	• Top-1	Top-5
	VIC-MAE	ViT-B	K400 + IN1K	83.0	80.8	58.6	69.5		0	63.25 83.34	ſ	max	67.01		\checkmark		65.40	84.03
ſ	VIC-MAE	ViT-L	K400 + IN1K	86.0	86.8	60.0	75.0		2	64.47 84.31 65.25 84.64		mean	67.66	86.22	2 _	\checkmark	66.03	85.01
		V:T D	K710 + M;T + IN1K	020	80.0	50.1	60.8		8	65.89 84.91					\checkmark	\checkmark	67.66	86.22
ſ			$\frac{10+1011+101K}{10-100}$	00.0 07 1	00.9	09.1 60.7	09.0		D	$67.66 \ 86.22$								
		V11-L	κ (10 + 1011 + 101K	81.1	81.8	00.7	(5.9		_									

Main result

Video-to-image transfer