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Video is an unrepresented category in foundation models

GPT4-v answers Rock 
Climbing when the 
action is Abseiling

ViC-MAE uses image and video data better, and scales better  than other methods

ViC-MAE is a powerful method to model images and video data

• There is discrepancy in the way we train LLMs (using autoregression, 

masking) vs, how we train vision models (contrastive learning)

• There is no unified approach to model video data that has been shown 

to scale and produce better results than just averaging over frames. 

• Image-to-video transfer learning is very common, But the latter, 

video-to-image transfer learning has not been very successful with 

models reaching <50% accuracy.

ViC-MAE: Visual Contrastive Masked Auto-Encoders
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Table 1: Transfer learning results from video and image pre-training to

various datasets using the ViT/L-16 backbone. The pre-training data is a video
dataset (MiT, K600, K700, or K400) and/or image dataset (IN1K). All self-supervised
methods are evaluated end-to-end with supervised finetuning on IN1K, Kinetics-400,
Places365, and SSv2. Best results are in bold. Results of MAE, ST-MAE, and VideoMAE
for out-of-domain data were taken from Girdhar et al . [29].

Method Arch. Pre-training Data
In-Domain Out-of-Domain

IN1K K400 Places-365 SSv2
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ViT [23] ICML’20 ViT-B IN1K 82.3 68.5 57.0 61.8
ViT [23] ICML’20 ViT-L IN1K 82.6 78.6 58.9 66.2
COVeR [86] arXiv’21 TimeSFormer-SR JFT-3B+ K400+ MiT + IN1K 86.6 87.2 - 70.9
OMNIVORE [30] CVPR’22 ViT-B IN1K + K400 + SUN RGB-D 84.0 83.3 59.2 68.3
OMNIVORE [30] CVPR’22 ViT-L IN1K + K400 + SUN RGB-D 86.0 84.1 – –
TubeViT [63] CVPR’23 ViT-B K400 + IN1K 81.4 88.6 – –
TubeViT [63] CVPR’23 ViT-L K400 + IN1K – 90.2 – 76.1
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MAE [34] CVPR’22 ViT-B IN1K 83.4 – 57.9 59.6
MAE [34] CVPR’22 ViT-L IN1K 85.5 82.3 59.4 57.7
ST-MAE [26] NeurIPS’22 ViT-B K400 81.3 81.3 57.4 69.3
ST-MAE [26] NeurIPS’22 ViT-L K400 81.7 84.8 58.1 73.2
VideoMAE [72] NeurIPS’22 ViT-B K400 81.1 80.0 – 69.6
VideoMAE [72] NeurIPS’22 ViT-L K400 – 85.2 – 74.3
OmniMAE [29] CVPR’23 ViT-B K400 + IN1K 82.8 80.8 58.5 69.0
OmniMAE [29] CVPR’23 ViT-L K400 + IN1K 84.7 84.0 59.4 73.4

ViC-MAE ViT-L K400 85.0 85.1 59.5 73.7
ViC-MAE ViT-L MiT 85.3 84.9 59.7 73.8
ViC-MAE ViT-B K400 + IN1K 83.0 80.8 58.6 69.5
ViC-MAE ViT-L K400 + IN1K 86.0 86.8 60.0 75.0

ViC-MAE ViT-B K710+ MiT + IN1K 83.8 80.9 59.1 69.8
ViC-MAE ViT-L K710 + MiT + IN1K 87.1 87.8 60.7 75.9

4 Experiment Settings

We perform experiments to demonstrate the fine-tuning performance of our
method on ImageNet-1k and other image recognition datasets. We also evaluate
our method on the Kinetics-400 dataset [40] and Something Something-v2 [32]
for action recognition to show that our model is able to maintain performance
on video benchmarks. Full details are in the supplemental material.
Architecture. We use the standard Vision Transformer (ViT) architecture [23]
and conduct experiments fairly across benchmarks and methods using the ViT-
B/16 and ViT-L/16 configurations. For masked image modeling, we use a small
decoder as proposed by He et al . [34]. Finetunig on images requires no changes
since this resembles the pre-training configuration. Finetuning on videos is as
follows: we initialize the temporal tokenizer by replicating the spatial tokens
along the temporal dimension scaled by the length of the video, similarly, we
initialize the MHA parameters by replicating them but skip the scaling for them.
We use the standard of finetuning on videos of 16 frames, skipping 4.
Pre-Training. We adopt Moments in Time [56], Kinetics-400 [40], and ImageNet-
1k [21] as our main datasets for self supervised pre-training. They consist of

Main result Video-to-image transfer

Ablations
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Table 3: ViC-MAE ablation experiments with ViT/B-16. We present linear evaluation
results on the ImageNet-1K dataset.

(a) Ablation on frame sepa-
ration. 0: sample same frame,

D: distant sampling, and > 0
continuous sampling.

Frame separation ImageNet-1K

Top-1 Top-5

0 63.25 83.34
2 64.47 84.31
4 65.25 84.64
8 65.89 84.91

D 67.66 86.22

(b) Ablation on pooling
type. The hyperparameter � is

set to 0.025 and introduced us-

ing a schedule.

Pooling type Top-1 Top-5

GeM 66.92 85.50
max 67.01 85.59
mean 67.66 86.22

(c) Ablation on different
augmentations.We use a com-

bination of different color and

spatial augs.

Color

Augm.
Spatial

Augm.

ImageNet-1K

Top-1 Top-5

65.40 84.03
66.03 85.01
67.66 86.22

achieves 73.5%. Several works have tried to address this by combining contrastive
learning with masked image modeling to get the best of both worlds. CAN [55],
C-MAE [39] and MAE-CT [43] obtain linear evaluation accuracies of 74.0%, 73.9,
73.4%, respectively when trained on IN1K while ViC-MAE obtains 74.0% trained
only on IN1K using ViT/B-16 pre-trained for 800 epochs to make the comparison
fair. When using the K400 and IN1K datasets together for pre-training, we get
73.6%, but we highlight that ViC-MAE can now maintain good performance in
videos and images using the same pre-trained model.

5.3 Transfer Learning Experiments

In this section, we evaluate our pre-trained models from Table 1 for transfer
learning on downstream tasks.

Video-to-image transfer learning performance. We evaluate transfer learn-
ing performance of ViC-MAE across a diverse array of 12 downstream image
classification tasks [7, 9, 19,25,41,42,53,57,60,83]. (Due to space constraints, we
have shown the six most significant ones. See supplemental material for the full
table.) Table 2 shows the results of four models based on a ViT/B backbone. We
perform linear evaluation. We train two models using two video datasets. The
first model is a baseline MAE model pre-trained on randomly sampled frames
from videos on the Moments in Time and Kinetics-400 datasets. The second
model is our full ViC-MAE model pre-trained on each of the same two datasets.
Our model significantly outperforms the other baselines on 9 out of 12 datasets,
whereas the MAE trained on Kinetics is superior on only 3 (i.e. Cars, Aircraft,
and Pets). When scaling the size of our models, we see that ViC-MAE surpasses
all models, including OmniMAE [29] trained on SSv2+IN1K3

Object detection and segmentation. We finetune Mask R-CNN [36] end-
to-end on the COCO dataset. We adapted the ViT backbone to be used with
the FPN, following the recipe outlined in Li et al . [46]. We apply this approach
3These are the only publicly available checkpoints of OmniMAE


