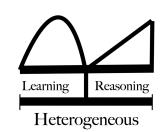
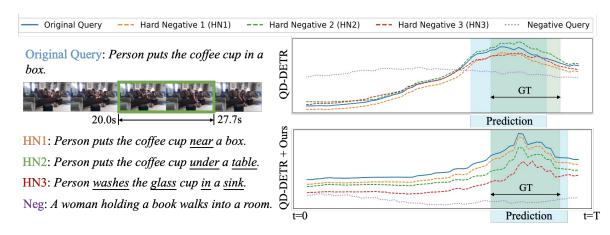


EUROPEAN CONFERENCE ON COMPUTER VISION


SHINE: Saliency-aware Hlerarchical NEgative Ranking for Compositional Temporal Grounding

Zixu Cheng^{1*}, Yujiang Pu^{2*}, Shaogang Gong¹, Parisa Kordjamshidi², Yu Kong²

¹School of Electronic Engineering and Computer Science, Queen Mary University of London ²Department of Computer Science and Engineering, Michigan State University (* Equal Contribution)

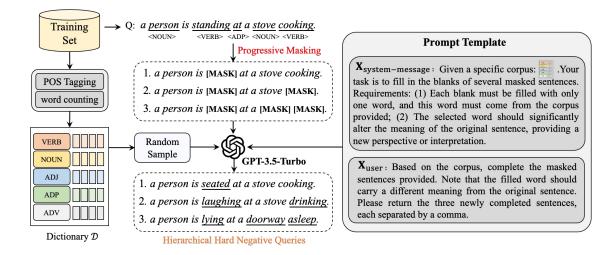

Background

Identify the **start and end timestamp** in the video that correspond to the query sentence. The model is expected to:

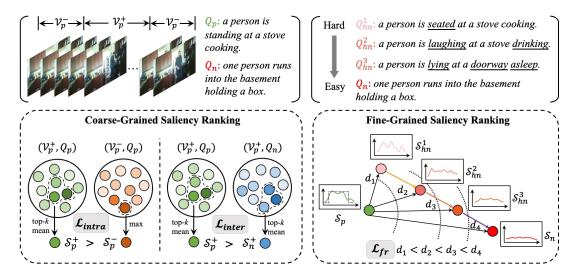

Generalize to **unseen** video moments by learning **fine-grained semantics** in **compositional concepts** in the training data.

Existing Work

- Only consider dominant verbs and nouns.
- Random sampling leads to implausible compositions.
- Irrational saliency responses to hard negatives due to a lack of compositional generalization.


Proposed Method

- We introduce an LLM-driven approach that produces semantically plausible hard negative queries.
- We propose a coarse-to-fine saliency ranking strategy to capture hierarchical semantic differences and boost compositional generalizability.


Proposed Method

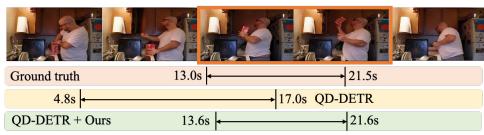
Hierarchical Hard Negatives Construction

- Part-of-speech tagging on queries to obtain five types of primitives
- Iteratively masking the primitives with different ratios
- GPT-3.5-Turbo fills in the blanks

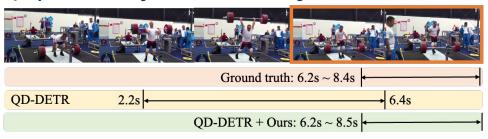
Coarse-to-Fine Saliency Ranking

- Coarse-grained saliency ranking improves the discriminative capability of the video-text representation.
- saliency Fine-grained ranking loss discern the nuances between various primitive words and video moments.

Experimental Results


• Quantitative Comparison

State-of-the-art performance is achieved on Charades-CG dataset.


Setting Method		Test-Trivial			Novel-Composition			Novel-Word		
		R1@0.5	R1@0.7	mIoU	R1@0.5	R1@0.7	mIoU	R1@0.5	R1@0.7	mIoU
WS	WSSL [6]	15.33	5.46	18.31	3.61	1.21	8.26	2.79	0.73	7.92
RL	TSP-PRL [41]	39.86	21.07	38.41	16.3	2.04	13.52	14.83	2.61	14.03
РВ	TMN_[26]	18.75	8.16	19.82	8.68	4.07	10.14	9.43	4.96	11.23
	2D-TAN [58]	48.06	27.10	43.72	32.74	15.25	31.5	37.12	18.99	35.04
	2D-TAN + SSL [21]	53.91	31.82	46.84	35.42	17.95	33.07	43.60	25.32	39.32
	MS-2D-TAN [57]	57.85	37.63	50.51	43.17	23.27	38.06	45.76	27.19	40.80
	MS-2D-TAN+SSL $[21]$	58.14	37.98	50.58	46.54	25.10	40.00	<u>50.36</u>	28.78	43.15
PF	LGI_[33]	49.45	23.8	45.01	29.42	12.73	30.09	26.48	12.47	27.62
	$VLSNet_[56]$	45.91	19.80	41.63	24.25	11.54	31.43	25.60	10.07	30.21
	VISA* [23]	53.20	26.52	47.11	45.41	22.71	42.03	42.35	20.88	40.18
	Deco [48]	58.75	28.71	49.06	47.39	21.06	40.70	-	-	-
	Moment-DETR [†] [20]	49.48	28.04	44.82	39.42	18.62	36.61	46.76	24.75	41.70
	Moment-DETR+Ours	57.14	33.85	49.32	44.65	23.21	39.86	47.05	24.32	41.57
	$QD-DETR^{\dagger}$ [32]	59.24	33.43	50.92	42.30	21.09	38.55	46.04	26.33	42.89
	$\operatorname{QD-DETR} + \operatorname{Ours}$	60.66	38.60	52.53	50.23	27.69	44.14	55.25	35.25	48.10

• Qualitative Analysis


Query: A person puts a box on the counter.

Query: The man drops the barbell onto the ground.

Query: Person start pouring water into a pot to begin cooking.

