ECCV 2024 Embedding-Free Transformer with Inference Spatial Reduction for Efficient Semantic Segmentation

Sogang University Vision & Display Systems Lab, Dept. of Electronic Engineering

Presented by Hyunwoo Yu, Yubin Cho, Beoungwoo Kang, Seunghun Moon, Kyeongbo Kong, Suk-Ju Kang

Outline

- Background
- Method

Embedding-Free Attention (EFA) structure Inference Spatial Reduction (ISR) method

• Experiment

Background

- Transformer-based architecture shows great success in computer vision
- Large amount of computation and parameter in transformer structure

Especially, the computational cost of transformer is crucial in high resolution task such as semantic segmentation

• In this paper, we analyze the general self-attention mechanism as two parts.

The first is QKV embedding phase and the second is global non-linear functioning

QKV embedding Global non-linear function

Method

• Embedding-Free Attention (EFA) structure

Remove the query, key, value embedding phase and focus on the non-linear global functioning

Method

• Encoder-Decoder Attention Transformer (EDAFormer) architecture

Based on our powerful EFA module, we design the semantic segmentation model

-EDAFormer composed with EFA transformer block (EFT) in encoder-decoder.

- The decoder leverage the more number of EFA module to the high-level features

(a) Overall architecture of EDAFormer

Method

• Inference Spatial Reduction(ISR) method

Reduce the key-value resolution in inference phase.

- Reduce the computation with little performance degradation
- Segmentation specific method by maintained the input-output resolution

: In self-attention mechanism, the reduction of key-value resolution does not affect to the output resolution

Overview of Inference Spatial Reduction(ISR) method

Experiment

Method	Params (M)	$\begin{array}{c} \text{ADE20K} \\ \text{GFLOPs} \downarrow \text{mIoU} (\%) \uparrow \end{array}$		$\begin{array}{c} \text{Cityscapes} \\ \text{GFLOPs} \downarrow \text{mIoU} (\%) \uparrow \end{array}$		$\begin{array}{c} \text{COCO-Stuff} \\ \text{GFLOPs} \downarrow \text{mIoU} (\%) \uparrow \end{array}$	
Segformer-B0 [65]	3.8	8.4	37.4	125.5	76.2	8.4	35.6
FeedFormer [50]	4.5	7.8	39.2	107.4	77.9	-	-
VWFormer-B0 [66]	3.7	5.1	38.9	-	77.2	5.1	36.2
EDAFormer-T (w/o ISR)	4.9	5.6	42.3	151.7	78.7	5.6	40.3
EDAFormer-T (w/ ISR)	4.9	4.7	42.1	94.9	78.7	4.7	40.3
OCRNet [17]	70.5	164.8	45.6	1296.8	81.1	-	-
Swin UperNet-T [40]	60.0	236.0	44.4	-	-	-	-
ContrastiveSeg [57]	58.0	-	-	-	79.2	-	-
SenFormer [2]	144.0	179.0	46.0	-	-	-	-
Segformer-B2 [65]	27.5	62.4	46.5	717.1	81.0	62.4	44.6
ProtoSeg [80]	90.5	-	48.6	-	80.6	-	42.4
MaskFormer [10]	42.0	55.0	46.7	-	-	-	-
Mask2Former [9]	47.0	74.0	47.7	-	-	-	-
FeedFormer-B2 [50]	29.1	42.7	48.0	522.7	81.5	-	-
VWFormer-B2 [66]	27.4	38.5	48.1	-	81.7	38.5	45.2
EDAFormer-B (w/o ISR)	29.4	32.0	49.0	605.9	81.6	32.0	45.9
EDAFormer-B (w/ ISR)	29.4	29.4	48.9	452.9	81.6	29.4	45.8

Table 1. Comparison with semantic segmentation model

Models	Params (M)	GFLOPs	Top-1 Acc. (%)
RSB-ResNet-18 [29,61]	12	1.8	70.6
PVTv2-B0 [59]	3.4	0.6	70.5
MiT-B0 [65]	3.7	0.6	70.5
EFT-T (Ours)	3.7	0.6	72.3
ResNet50 [29]	25.5	4.1	78.5
RSB-ResNet-152 [29, 61]	60.0	11.6	81.8
DeiT-S [54]	22.0	4.6	79.8
PVT-Small [58]	25.0	3.8	79.8
PVTv2-B2 [59]	25.4	4.0	82.0
MiT-B2 [65]	25.4	4.0	81.6
T2T-ViT-14 [74]	21.5	4.8	81.5
TNT-S [26]	23.8	4.8	81.5
ResMLP-S24 [53]	30.0	6.0	79.4
Swin-Mixer-T/D6 $[40]$	23.0	4.0	79.7
Visformer-S [8]	40.2	4.8	82.1
gMLP-S [37]	20.0	4.5	79.6
PoolFormer-S36 [71]	31.0	5.0	81.4
EfficientFormer-L3 [35]	31.3	3.9	82.4
FasterViT-0 [27]	31.4	3.3	82.1
EFT-B (Ours)	25.4	4.2	82.4

Table 2. Comparison with classification model

Table 3. Computation analysis of attention block. The FLOPs and parameters were computed on stage 3 features of 224×224 size

Experiment

Figure 1. Visualization of the attention map, output features and prediction map on ADE20K

$\begin{bmatrix} r_E^1, r_E^2, r_E^3, r_E^4 \end{bmatrix} - \begin{bmatrix} r_D^1, r_D^2 \end{bmatrix}$ Train	$[r_D, r_D^3]$ Reduction ratio Pa	arams (M)	ADE GELOPs	E20K mIoU (%) ↑	Cityso GELOPs	apes mIoU (%)↑	GFLOPs)-Stuff mIo∐ (%) ↑
(a) EDAFormer-T with the different reduction ratio at inference.								11100 (70)
[8, 4, 2, 1]-[1, 2, 4] [[[1]	$ \begin{array}{c c} 8, 4, 2, 1 \] - [\ 1, 2, 4 \]^{\dagger} \\ 8, 4, 2, 1 \] - [\ 2, 4, 8 \] \\ 6, 8, 2, 1 \] - [\ 2, 4, 8 \] \\ 16, 8, 4, 2 \] - [\ 2, 4, 8 \] \\ 16, 8, 4, 2 \] - [\ 2, 4, 8 \]^{\ast} \\ \end{array} $	4.9 4.9 4.9 4.9 4.9	5.6 5.3 (-5.4%) 4.7 (-16.1%) 4.1 (-26.8%) 4.1 (-26.8%)	42.3 42.2 (-0.1) 42.1 (-0.2) 41.3 (-1.0) 42.1 (-0.2)	$ \begin{vmatrix} 151.7 \\ 133.6 & (-11.9\%) \\ 94.9 & (-37.4\%) \\ 59.1 & (-61.0\%) \\ 59.1 & (-61.0\%) \end{vmatrix} $	78.7 78.7 (-0.0) 78.7 (-0.0) 78.1 (-0.6) 78.6 (-0.1)	$ \begin{vmatrix} 5.6 \\ 5.3 & (-5.4\%) \\ 4.7 & (-16.1\%) \\ 4.1 & (-26.8\%) \\ 4.1 & (-26.8\%) \end{vmatrix} $	40.3 40.3 (-0.0) 40.3 (-0.0) 39.1 (-1.2) 40.2 (-0.1)
(b) EDAFormer-B with the different reduction ratio at inference.								
[8, 4, 2, 1]-[1, 2, 4] [[1] [1]	$\begin{array}{c} 8, 4, 2, 1 \] - [\ 1, 2, 4 \]^{\dagger} \\ 8, 4, 2, 1 \] - [\ 2, 4, 8 \] \\ 6, 8, 2, 1] - [\ 2, 4, 8 \] \\ 16, 8, 4, 2 \] - [\ 2, 4, 8 \] \\ 16, 8, 4, 2 \] - [\ 2, 4, 8 \]^{\ast} \end{array}$	29.4 29.4 29.4 29.4 29.4 29.4	32.0 31.3 (-2.2%) 29.4 (-8.1%) 26.6 (-16.9%) 26.6 (-16.9%)	49.0 48.9 (-0.1) 48.9 (-0.1) 48.3 (-0.7) 48.7 (-0.3)	605.9 569.0 (-6.1%) 452.9 (-25.3%) 298.1 (-50.8%) 298.1 (-50.8%)	81.6 81.6 (-0.0) 81.6 (-0.0) 81.4 (-0.2) 81.6 (-0.0)	32.0 31.3 (-2.2%) 29.4 (-8.1%) 26.6 (-16.9%) 26.6 (-16.9%)	45.9 45.8 (-0.1) 45.8 (-0.1) 45.0 (-0.9) 45.7 (-0.2)

Table 4. Comparison with different reduction ration condition of our ISR method

