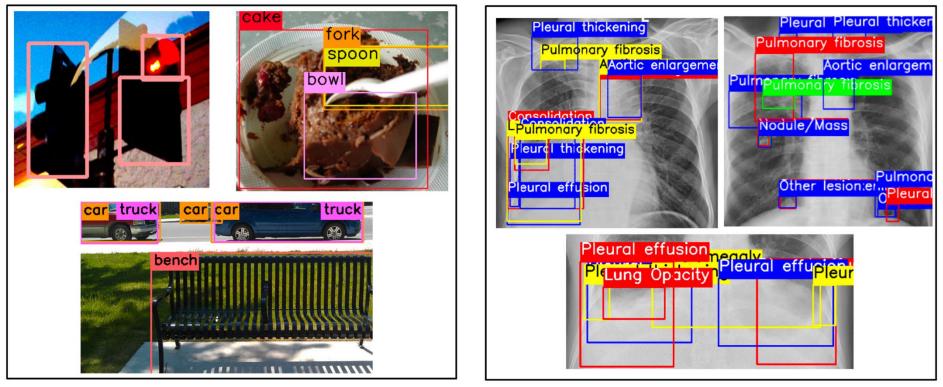


EUROPEAN CONFERENCE ON COMPUTER VISION


Bayesian Detector Combination for Object Detection with Crowdsourced Annotations

Zhi Qin Tan, Olga Isupova, Gustavo Carneiro, Xiatian Zhu, Yunpeng Li

Poster Session: 1st October 2024, 10:30 – 12:30

Noisy Crowdsourced Object Annotations

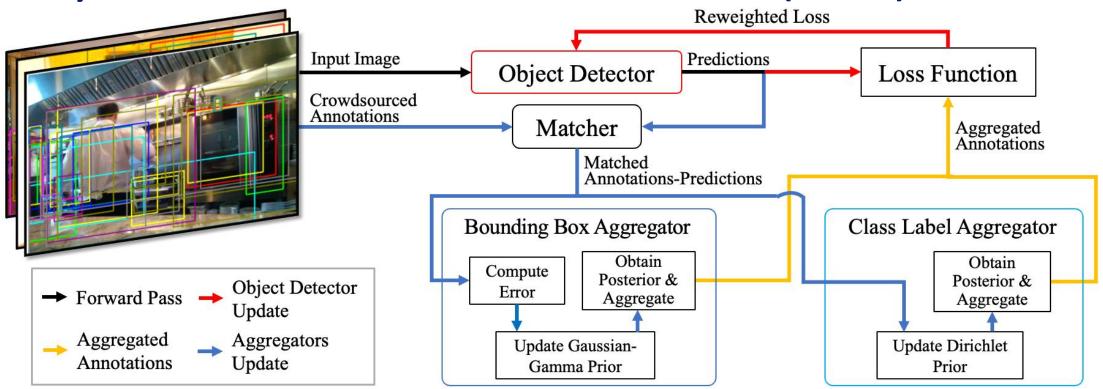
- Often difficult and expensive to obtain accurate annotations.
- High disagreements observed in complex domains due to high interobserver variability; challenging to achieve consensus.

Noisy annotations in MSCOCO

Disagreements in VinDr-CXR

Limitations of Existing Solutions

Algorithmic limitations:


- Majority voting: Assumes equal annotator annotation accuracy;
- Crowd R-CNN [1]: Not generalisable to other object detectors;
- WBF-EARL [2]: Requires annotators' proficiency levels.

Evaluation limitation:

- Prior works used private synthetic crowdsourced datasets constructed under different setups;
- Cannot compare their results directly.

[1] Hu and Meina. Crowd R-CNN: An object detection model utilizing crowdsourced labels. In *ICVISP*, 2020.
[2] Le et al. Learning from multiple expert annotators for enhancing anomaly detection in medical image analysis. *IEEE Access*, 11, 2023.

Bayesian Detector Combination (BDC)

Model-agnostic framework to simultaneously infer:

- 1. the annotation quality of each annotator,
- 2. the consensus bounding boxes,
- 3. and soft labels

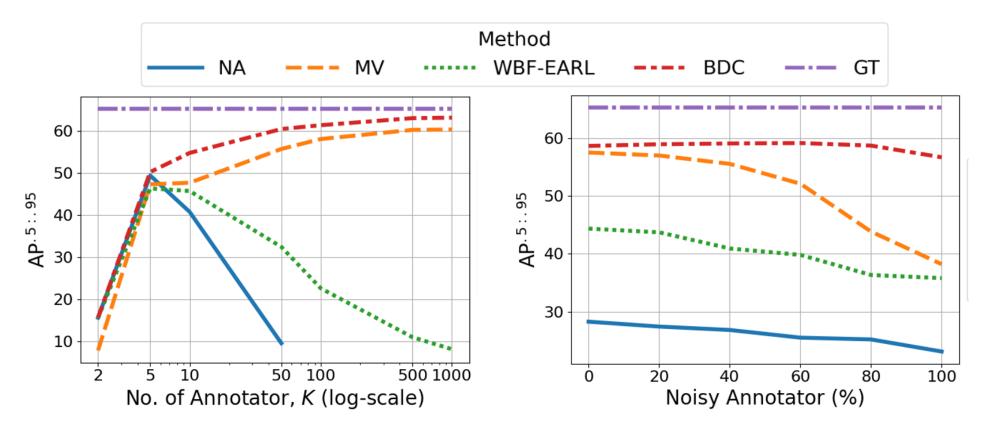
from noisy crowdsourced object annotations without any additional inputs.

Experiments and Results

- 1. Real-world datasets: VinDr-CXR: thoracic abnormalities dataset annotated by 17 expert radiologists.
- 2. Synthetic datasets: Simulate various crowdsourcing scenarios with VOC and MSCOCO dataset.

				vary	valying accuracy			
Method	Test AP ^{.4}			Method	Test AP ^{.5}			
	YOLOv7	FRCNN	EVA	Methou	YOLOv7	FRCNN	EVA	
NA	17.4	17.2	7.8	NA	53.4	39.7	71.8	
MV	13.9	16.3	8.2	MV	61.9	55.6	74.8	
Crowd R-CNN [1]	-	16.7	-	Crowd R-CNN [1]	-	48.5	-	
WBF-EARL [2]	16.4	17.0	8.4	WBF-EARL [2]	55.6	51.9	74.7	
BDC (ours)	19.2	17.9	8.9	BDC (ours)	65.0	56.6	78.0	

VinDr-CXR


COCO-FULL: 10 synthetic annotators with

[1] Hu and Meina. Crowd R-CNN: An object detection model utilizing crowdsourced labels. In *ICVISP*, 2020.

[2] Le et al. Learning from multiple expert annotators for enhancing anomaly detection in medical image analysis. *IEEE Access*, 11, 2023.

Experiments and Results

BDC scales well with the number of annotators and is robust to the percentage of noisy annotators with poor reliability.

EUROPEAN CONFERENCE ON COMPUTER VISION

Thank you!

Code & Dataset Available at:

https://t.ly/fDxrP