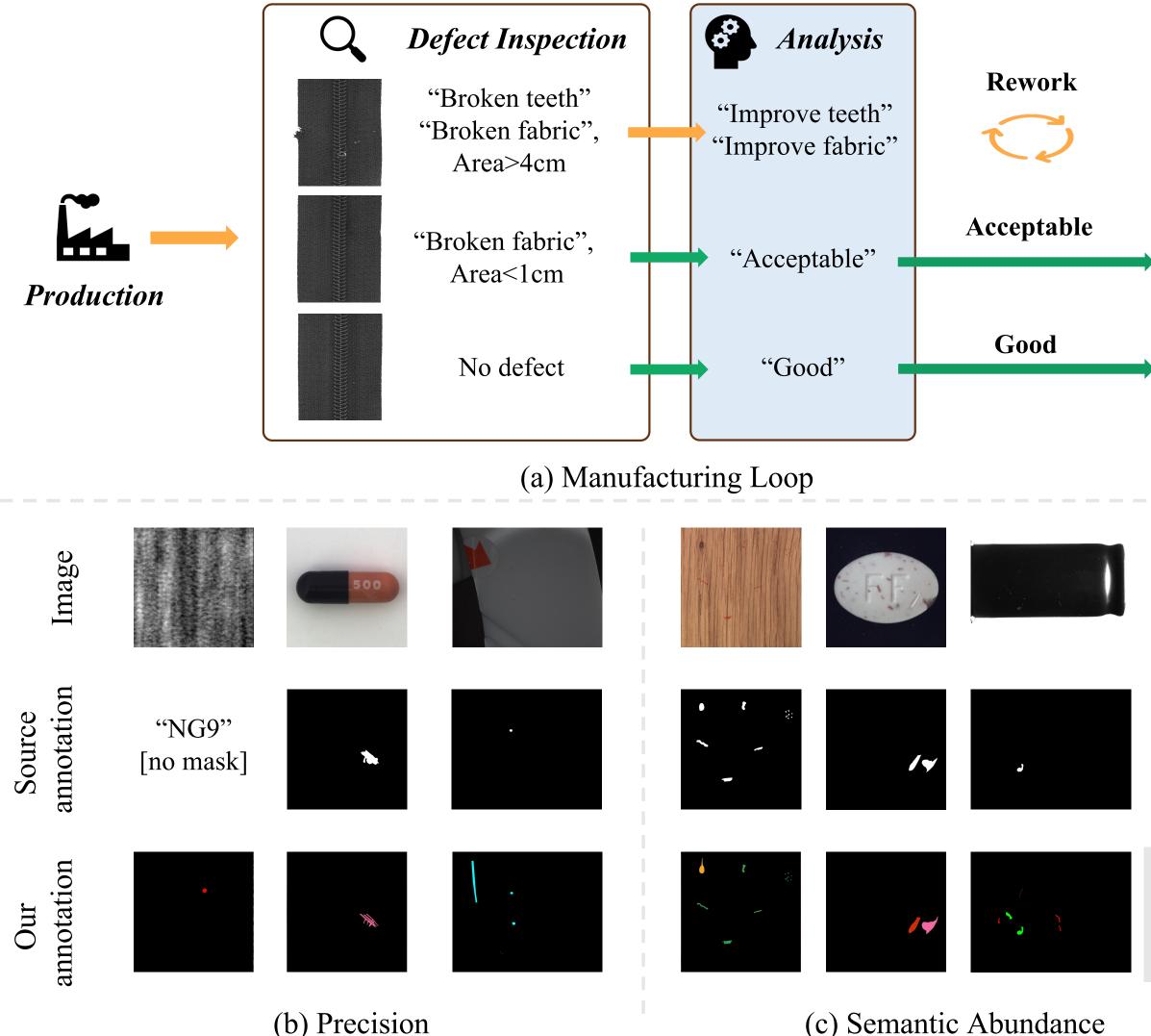


Introduction

- Current datasets fall short in meeting the complex practical requirements of industrial defect inspection. They suffer from poor quality annotations and insufficient sample diversity.
- We introduce the **Defect Spectrum**, a comprehensive industrial defects benchmark offering precise, semantic-rich, and large-scale annotations.
- We introduce **Defect-Gen**, a two-stage diffusion-based generator for creating high-quality synthetic images from limited data.



To assess our dataset's superiority, we design a simulation experiment that mirrors real-world manufacturing processes. We reduce the FPR while improving the recall rate.

Example classes	Standard For Benign Products							
Zipper	No defect on teeth; Fabric defect < 4800 pixels							
	No cracks; Contamination < 4000 pixels; Color stains < 300							
Wood	No scratch; No dent; Impurities < 250 pixels; Stain < 1000							
Method	↑ Rocal	1 (%) ↓ FPR (%)			Galactic 500			
method	necal	I (70) ↓ FFR (70)		1				
Original	85.3	49.60	. t≥ \$.		4.2°			
Defect Spectrum	(DS) 96.0	16.50						

Shuai Yang*, Zhifei Chen*, Pengguang Chen, Xi Fang, Yixun Liang, Shu Liu, and Yingcong Chen

Defect Spectrum Dataset

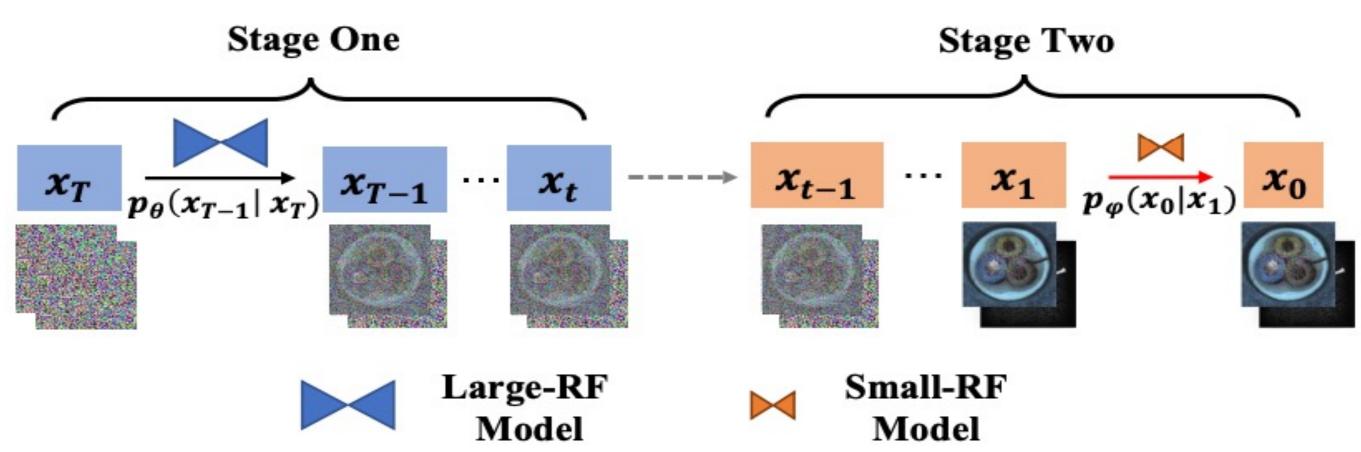
The image shows a pill, specifically a capsule, wit a white and red color. There are many scratch defects on the right part

00 pixels 0 pixels

	Annotated Defective Images	Defect Type	Pixel-wise Label	Multiple Defective Label
AITEX [36]	105	12	\checkmark	
AeBAD [51]	346	4	\checkmark	
BeanTech [27]	290	3	\checkmark	
Cotton-Fabric [20]	89	1		
DAGM2007 [46]	900	6		
KolektorSDD2 [39]	356	1	\checkmark	
MVTec [3]	1258	69	\checkmark	
VISION V1 [1]	4165	44	\checkmark	\checkmark
VisA [56]	1200	75	\checkmark	
Defect Spectrum	3518+1920*	125	\checkmark	\checkmark

Defect-Gen

By using the limited available data, we propose a two-staged diffusion-based generator, called the "Defect-Gen" to generate both defective images and masks.



I. Few-shot Challenge

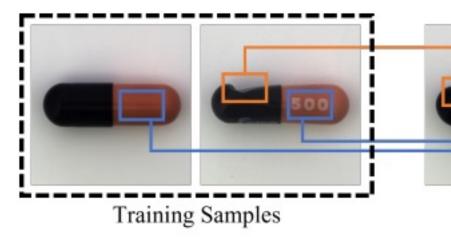
Due to the scarcity of defect images, models trained on few samples often memorize the training set and fail to capture the true data distribution.

II. Modeling Patch-Level Distribution

To alleviate the above-mentioned problem, we propose to model the patch-level distribution instead of the image-level distribution. III. Restraining the Receptive Fields

We can naively crop image into patches to achieve patch-level modeling. However, it is hard to use learned patches to reconstruct into a whole image during inference. Alternatively, we reduced number of down-sampling layers to constrain the output receptive fields. This allows the model to only be visible to small patches on the original images.

Evaluation of Defect-Gen

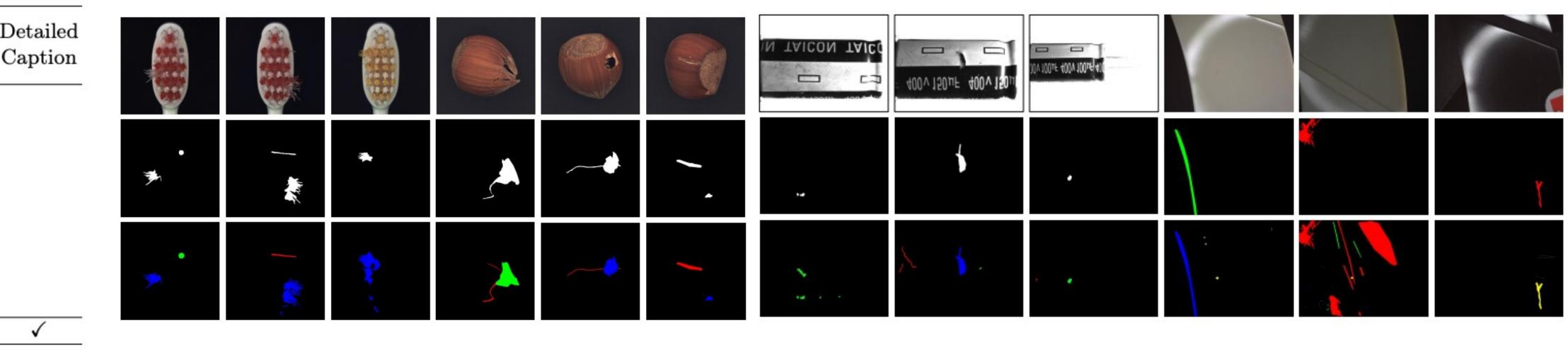


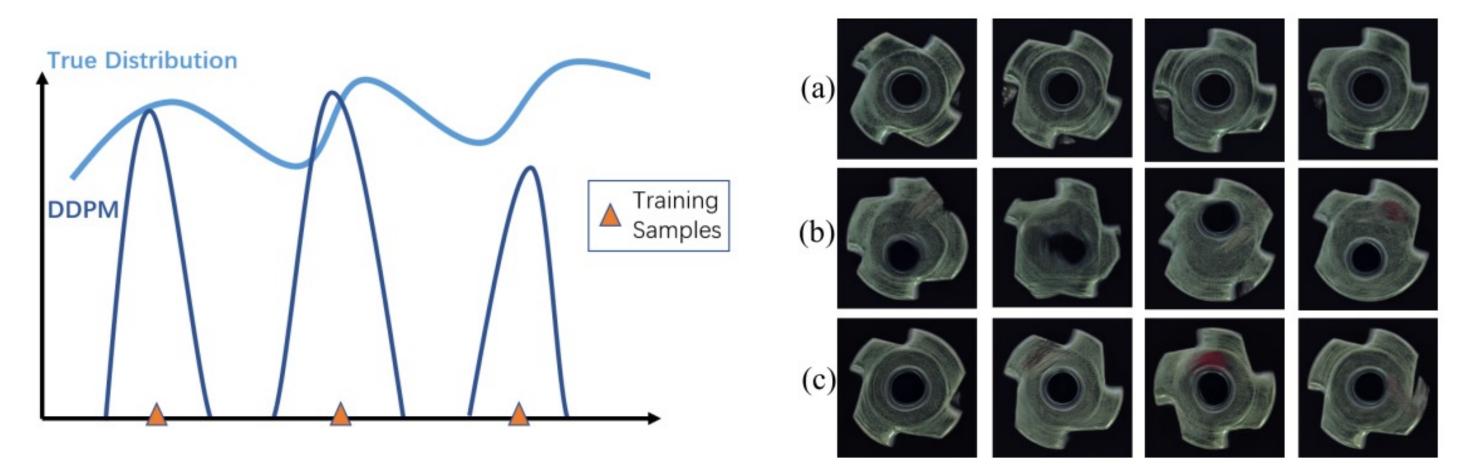
Generated

Result

DS-MVTec DS-VISION DS-Cotton DeepLabV3+ 51.58/55.55 52.33/53.46 48.73/58.58 Mask2Former 45.70/50.16 54.12/55.47 64.09/65.39 MiT-B0 46.45/**56.21** 49.62/**50.75** 50.52/**55.86**

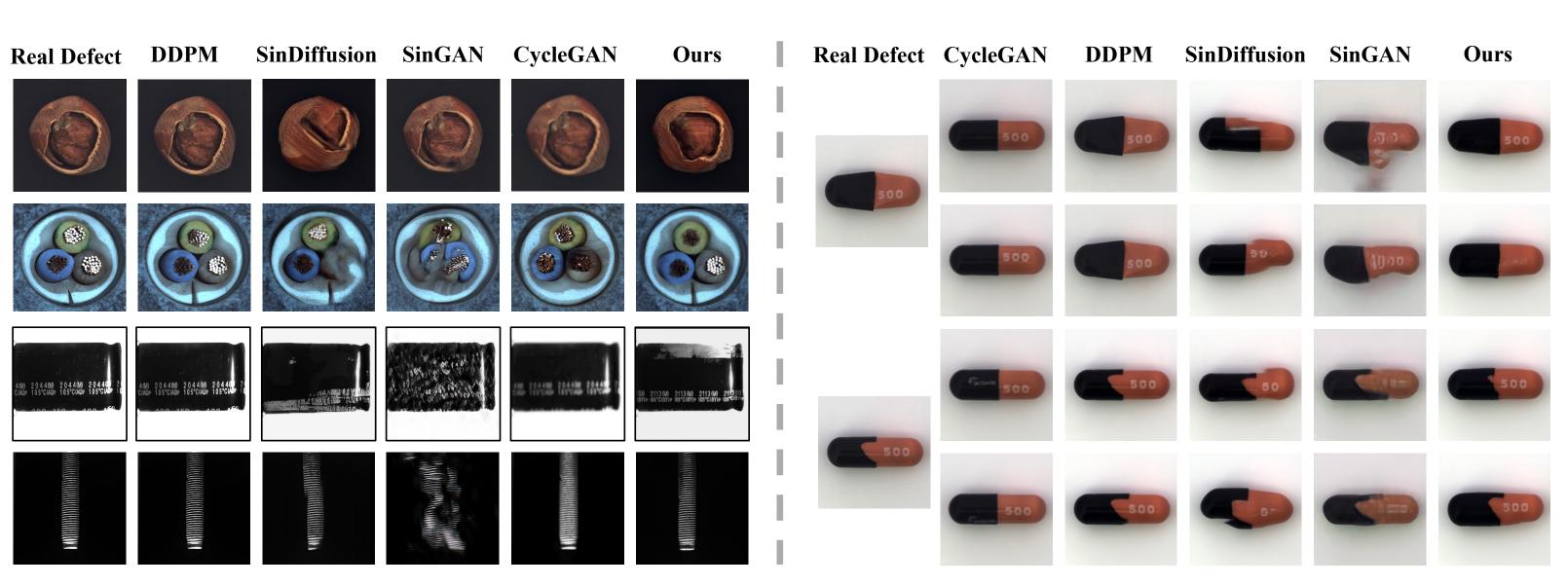
Defect Spectrum: A Granular Look of Large-Scale Defect Datasets with Rich Semantics





IV. Handling the Global Distortion

Patch-level modeling is effective in overcoming overfitting, it falls short of representing the global structure of the entire image. Thus, we trained a two-staged diffusion model, one with large RFs and one with small RFs. During inference, we use the large-RF model to capture the geometry structure in the early steps, and then switch to the small-RF model to generate diverse local patches in the remaining steps.



MILANO