

YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information Presenter : Hao-Tang Tsui Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao

Institute of Information Science, Academia Sinica, Taiwan

Poster: TUE-AM-Session1

Motivation (1/3)

• YOLOv4 to YOLOv7 learn diverse and consistent features through back-propagated gradient flow.

- YOLOv4 to YOLOv7: Optimize gradient path.

- **YOLOv9: Optimize both forward path and gradient path.**
- In YOLOv9, deal with the information bottleneck problem.

Motivation (2/3)

Information Bottleneck of DNNs: $I(x; x) \ge I(x; f_0(x)) \ge I(x; f_1(f_0(x))) \ge \ldots \ge I(x; F_{\theta}(x))$

Motivation (3/3)

Data loss in different object detection models at different depths

	Input Image	50 Layers	100 Layers	150 Layers
PlainNet		- ARTAN		
ResNet		A ANT	C. AATA T	to (ARS WS)
GELAN	KI	A AR	A ARIA	AN AN

Mainstream Approaches to Solving Information Bottleneck Problems

- *Reversible architectures*

pros: output data can be restored to input data through reverse calculations

cons: need extra layers, thus increase inference cost

- Masked modeling

pros: use reconstruction loss to preserve input information cons: reconstruction loss may contradict with target loss

- Deep supervision

pros: add prediction heads in shallow layers

cons: if shallow supervision loses information during training, it will cause considerable error accumulations

Our solutions for information bottleneck

- The design of PGI (Programmable Gradient Information)
 reversible architecture + deep supervision
- The design of GELAN (Generalized Efficient Layer Aggregation Network)

The Design of PGI (1/3)

- Use auxiliary reversible branch to make information remains intact when forwarded to the network end
- Use multi-level auxiliary information to help learn unbiased information
- Both techniques can be classified as bag-of-freebies

Bag-of-freebies 1. Improve accuracy 2. May increase training cost 3. No additional inference cost

The Design of PGI (2/3)

PGI: Reversible Architecture + Deep Supervision

(b) RevCol [3]

(a) PAN [37]

The Power of PGI

Power of PGI (1/3)

Visualize features of warm-up model on object detection task

Warm up features with PGI

Power of PGI (2/3)

PGI solves the problem of Deep Supervision (DS).

Model	Param. (M)	FLOPs (G)	AP (%)
GELAN-S	7.1	26.4	46.7
+ DS	-	_	46.5 (-0.2)
+ PGI	-	-	46.8 (+0.1)
GELAN-C	25.3	102.1	52.5
+ DS	-	-	52.5 (=)
+ PGI	-	-	53.0 (+0.5)
GELAN-E	57.3	189.0	55.0
+ DS	-	-	55.3 (+0.3)
+ PGI	-	-	55.6 (+0.6)

Power of PGI (3/3)

PGI can be generalized to various models, tasks, and training scheme

	COCO det	YOLOv9-S	YOLOv9-M	YOLOv9-L	YOLOv9-E
Conception to model cooled	#parameter	7.1M	20.0M	25.3M	57.3M
Generalize to model scales	without PGI	46.7	51.1	52.5	55.0
	with PGI	46.8	51.4	53.0	55.6

	Multi-task	Detection	Segment	Panoptic	Caption
Conoraliza to various tasks	metric	AP ^{box}	AP ^{box} /AP ^{seg}	mIoU/PQ	BLEU4
Generalize to various tasks	without PGI	52.5	52.3/42.4	39.0/39.4	38.8
	with PGI	53.0	52.9/43.2	39.8/40.5	39.1

	VOC det	YOLOv9-S	YOLOv9-S	YOLOv8-S	YOLOv8-L
Concelize to small detect	pretrain	-	COCO (PGI)	COCO	COCO
Generalize to small dataset	without PGI	64.4	73.5	67.1	73.8
	with PGI	65.1	74.4	-	-

13

Design of GELAN: Generalized Efficient Layer Aggregation Network (1/2)

 GELAN
 =
 CSPNet
 [Wang et al. 2019]

 +
 ELAN
 [Wang et al. 2022]

Characteristics of GELAN

- **1. compatible to various existing modern networks**
- 2. has extremely high parameter utilization
- **3. has excellent inference speed on various devices**

Design of GELAN:Generalized Efficient Layer Aggregation Network (2/2)

Power of GELAN

Power of GELAN

GELAN can be generalized to various models and has high inference speed

	MG YOLOv9	LH YOLOv9	YOLOv9 TR	YOLOv9 Lite	YOLOv9 Light
#Parameter	25.3M	21.1M	14.1M	13.3M	2.5M
FLOPs	102.1G	82.5G	67.5G	66.7G	11.0G
mAP	53.3%	52.9%	53.1%	52.7%	44.1%

Generalize to various models: mask-guided YOLOv9 (MG YOLOv9), light head YOLOv9 (LH YOLOv9), YOLOv9 with Transformer (YOLOv9 TR), YOLOv9 using hybrid convolution (YOLOv9 Lite), and YOLOv9 using depth-wise convolution (YOLOv9 Light).

	YOLOv6-L 3.0	YOLOv7 AF	YOLOv8-L	YOLOv9-C	YOLOv9-C-TR
Latency	7.9ms	6.7ms	8.1ms	6.1ms	5.9ms
mAP	51.8/52.8 ^{distill}	53.0	52.9	53.0	53.1

GELAN has very high inference speed, it about 25% faster than YOLOv8.

Results

Results

YOLOv9 has strong ability on multi-task applications PGI makes YOLOv9 outperforms SOTA methods in all aspects.

	Model	#Param.	APbox	AP ^{mask}	mIoUsem	mIoU ^{stuff}	PQpan	BLEU4 ^{cap}	Acc ^{gnd}
	GiT-B	131M	46.7	31.9	47.8^{*}	-	-	35.4+	85.8
ECCV'24	GiT-L	387M	51.3	35.1	50.6*	-	-	35.7+	88.4
(Oral)	GiT-H	756M	52.9	35.8	52.4*	-	-	36.2+	89.2
	YOLOv9	45.5M	52.2	42.9	49.4	56.8	42.2	39.4	-
		•							
	Model	Time ^{total}	Time ^{box}	Time ^{ma}	sk Time ^{ser}	ⁿ Time ^{stuff}	Time ^{par}	ⁿ Time ^{cap}	Time ^{gnd}
ECOVIDA	Model GiT-B	Timetotal2589ms	Time ^{box} 359	Time ^{ma} 1149	^{isk} Time ^{ser} 717	ⁿ Time ^{stuff} -	Time ^{pa}	n Time^{cap}272	Time ^{gnd} 92
ECCV'24	Model GiT-B GiT-L	Timetotal2589ms5320ms	Timebox 359 689	Time ^{ma} 1149 2451	^{1sk} Time ^{ser} 717 1617	ⁿ Time ^{stuff} - -	Time ^{pa}	 Time^{cap} 272 424 	Timegnd 92 139 139
ECCV'24 (Oral)	Model GiT-B GiT-L GiT-H	Timetotal 2589ms 5320ms 8321ms	Timebox 359 689 1053	Time ^{ma} 1149 2451 3838	 ^{15k} Time^{ser} 717 1617 2703 	m Time ^{stuff}	Time ^{pa}	n Timecap 272 424 550 1000000000000000000000000000000000000	Timegnd 92 139 139 1777 140
ECCV'24 (Oral)	Model GiT-B GiT-L GiT-H YOLOv9	Timetotal 2589ms 5320ms 8321ms 61.5ms	Timebox 359 689 1053	Time ^{ma} 1149 2451 3838	^{1sk} Time ^{ser} 717 1617 2703	m Time ^{stuff} 51.5	Time ^{pa}	n Timecap 272 424 550 550	Timegnd 92 139 1777 -

135× faster **YOLOv9** gets all predictions in one shot inference

Results

Generalist YOLO

A red double decker bus driving down a street

Conclusions

- propose a trustworthy AI technology to make a model generate and learn from reliable gradient information
- design an efficient networks which is generalized various architectures and has low inference latency.
- 3. show the proposed trustworthy AI technology is generalized to various models, tasks, and training scheme.
- 4. show the proposed framework will bring real-time computer vision systems to a new achievement.

Thanks

Q&A