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Figure 1. Examples of whole-image prototypes and prototypical parts explanations for classifying a bird according to species.
(left) Whole-image prototypes are traditionally images taken from the training data taken to be representatives for a particular
class. A classification decision can be then explained by finding a prototype for that class with a high similarity to the query image
and contrasting that with low similarity scores for prototypes from other classes. (right) Prototypical parts build on this idea by
using parts of images from the training data and finding their similaritywith parts of the query imagewhen forming explanations.

Sample

: Prototype Layer

Similarity
Scores

: Readout Layer

Logits

Patch-Prototype
Comparison Pooling

: Backbone Layers

0.3

1.5

1.0

0.1

+

+

3.2

0.1

Linear Transform

1.2

0.5

. .
 .

Blue Jay

Ovenbird

Florida Jay

Pileated Woodpecker

. .
 .

Embedded
Patches

Figure 2. The ProtoPNet architecture enables “This looks like that” explanations. Predictions are a linear function of the simi-
larity between learnable prototypes (corresponding to object parts) and embedded image parts. However, it is limited by its pixel
space mapping (prototype projection) and prototype expressivity (latent point-based representation).
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Figure 3. (a)“This looks like that”-style explanations of bird (top row) and automobile (bottom row) image classification
decisions. The third column shows the most-likely dataset image part for each prototypical distribution. Rather than using
training samples as prototypes, ProtoFlow learns prototype distributions directly over the latent space, leading to the “bird/car-
adjacent” images in the fourth column. (b) Themean point image of the bird prototype with a bird-like figure segmented from
the background. (c) Human-picked images from cifar-10 that qualitatively match this prototype image.
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Figure 4. (left) Existing prototypical networks rely on learning prototypes as latent points, making it hard to visualize latent
points. (right) ProtoFlow learns prototypes as latent probability distributionswith exact inverses.
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Equation Set 1. (1) The conditional class likelihood pX (y | x) models the latent prototypes as Gaussian mixture models. (2)
The diversity lossLdiv penalizes prototypes with the squaredHellinger distance H̃2. (3) Consistency regularizationLcr penalizes
variance under perturbations and augmentations. (4) The full lossL is an afÏne combination ofLdiv andLcrwith cross-entropy.
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Figure 5. ProtoFlow is a composition of normalizing flows that learns latent Gaussian mixtures as prototypes. In the normalizing
X

f
−→ Z direction, the composition f = fk ◦ · · · ◦ f1 pulls back the structured latent density pZ to the complex data density pX .

In the generatingX f−1

←− Z direction, latent samples z̃ ∼ pZ get pushed forward along the inverse mapping f−1.

Figure 6. (top) Inter-class latent space interpolations using ProtoFlow trained on cifar-10. (bottom) Prototype means (center
of grids) and samples (surrounding) from prototypes learned on cifar-10with truncation set to 1 and with consistency loss.
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Figure 7. (left) Are we learning relevant prototypes? Given a query image x, we compute pixel-wise heatmaps of this image—
for each prototype, for each class—based on the latent likelihood of patches of the query image conditioned on the prototypes
(see paper for details). We quantify the relevance of our prototypes by comparing likelihoods from the top k% pixels from these
heatmaps to those from random heatmaps. (right)What is the impact of consistency loss? Embedded points lie closer to distri-
bution means without the consistency loss than with it, possibly explaining their lack of “noise” and more “realistic” appearance.

dataset resolution model proto-based flow-based acc ↑ bpd ↓ ece ↓ mce ↓

mnist 28× 28

ProtoFlow 3 3 99.36 0.535 0.006 0.587
FlowGMM 7 3 99.63 — 0.004** —
Fetaya et al. 7 3 99.30 1.00 — —
SCNF-GLOW 7 3 88.44 1.15 — —
SCNF-GMM 7 3 83.10 1.14 — —

cifar-10 32× 32

ProtoFlow 3 3 91.54 3.95 0.083 0.494
IB-INN (γ →∞) 7 3 91.28 17.3 0.81 13.9
IB-INN (γ = 1) 7 3 89.73 5.25 0.54 3.25
FlowGMM 7 3 88.44 — 0.038** —
Fetaya et al. 7 3 84.00 3.53 — —

ProtoPNet 3 7 84.9 — — —

cifar-100 32× 32

ProtoFlow 3 3 69.80 5.03 0.292 0.637
IB-INN (γ →∞) 7 3 66.22 18.4 0.62 16.8
IB-INN (γ = 1) 7 3 57.43 4.93 0.58 7.04

Table 1. A selection of ProtoFlow results on joint generative & predictive modeling across different image classification datasets,
achieving state-of-the-art accuracywhile retaining highly competitive density estimation&calibration scores. See paper formore.
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Figure 8.Meanpoints learnedwith consistency regularization (a) aremore interpretable than the uninformativemeans (c) learned
without it. However, samples with the consistency loss (b) are poor compared to those from obtained without it (d).

State-of-the-art performance on joint predictive and generative tasks.
Measurably improved prototype interpretability.
Improved uncertainty estimates & understanding of latent space.
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