

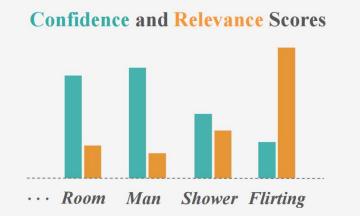
Multimodal Label Relevance Ranking via Reinforcement Learning

Taian Guo*, Taolin Zhang*, Haoqian Wu, Hanjun Li, Ruizhi Qiao, Xing Sun **Tencent Youtu Lab** Tsinghua Shenzhen International Graduate School, Tsinghua University

Outline

- **D** Motivation
- Problem Setting
- Proposed Method
- Proposed Dataset
- **D** Experiment Results
- □ Main Contributions

Label Confidence vs. Label Relevance



Reggie and Dyle spend one-third of their time trying to figure out which of the two remaining cutthroats killed Scobie and Charles, and the rest of the time flirting, first near L'Île de la Cité and then back in her room (where Dyle famously takes a **shower** with his clothes on)

Fig. 1: Illustration of the Difference between Label Confidence and Label Relevance. This figure provides an example of a movie footage consisting of three consecutive keyframes and its scene description. Generally, conventional label confidence tends to place more emphasis on the tangible objects, whereas the proposed label relevance better reveals the relations between labels and the real scene which they correspond to.

Definitions

- x, i.e., $C(l_i/x) = P(l_i \in \mathcal{L}_x/x)$. (1)
- measures the degree of association between l_i and x.

The Importance of Label Relevance

- theme of multimodal inputs.
- emphasize the important labels.

• **Definition 1 (Label Confidence).** *Given a multi-label classification task* with a set of labels $\mathcal{L} = \{l_1, l_2, \dots, l_n\}$, an instance x is associated with a label subset $\mathcal{L}_x \subseteq \mathcal{L}$. The label confidence of a label l_i for instance x, denoted as $C(l_i | x)$, is defined as the **probability** that l_i is a **correct** label for

• **Definition 2** (Label Relevance). The label relevance of a label l_i for instance x, denoted as $R(l_i | x)$, is defined as the **degree** of association between l_i and x, i.e., $R(l_i/x) = f(l_i, x)$, (2) where f is a function that

• Label confidence typically refers to the estimation from a model about the probability of a label's occurrence, while label relevance primarily denotes the significance of the label to the **primary**

• Relevance labels bear a closer alignment with human preferences.

• Ranking the labels in order of relevance can be employed to

Multimodal Label Relevance Ranking

Problem Setting

- \square Given V video clips, where the *j*-th clip consists of frames $F^{j} = [F_{0}^{j}, F_{1}^{j}, ..., F_{N-1}^{j}]$, with N representing the total number of frames extracted from a video clip, and *j* ranging from 0 to V-1.
- \square Each video clip is accompanied by text descriptions T^{j} and a set of recognized labels denoted as \mathcal{L}^{j} , where $\mathcal{L}^{j} = \{l_{0}^{j}, l_{1}^{j}, ..., l_{i}^{j}, ..., l_{|\mathcal{L}^{j}|-1}^{j}\}$, and $|\mathcal{L}^{j}|$ is the number of labels in the *j*-th video clip.
- \Box The objective of label relevance ranking is to learn a ranking function $f_{\text{rank}}: F^j$, T^j , $L^j \rightarrow$ U^{j} , where $U^{j} = [u_{0}^{j}, u_{1}^{j}, ..., u_{i}^{j}, ..., u_{|\mathcal{L}^{j}|-1}^{j}]$ represents the ranking result of the label set L^{j} .

Metrics

- NDCG: Normalized Discounted Cumulative Gain.
- NDCG@k : For each video clip, we compute NDCG@k for the top k labels.

Overall Framework of LR²PPO

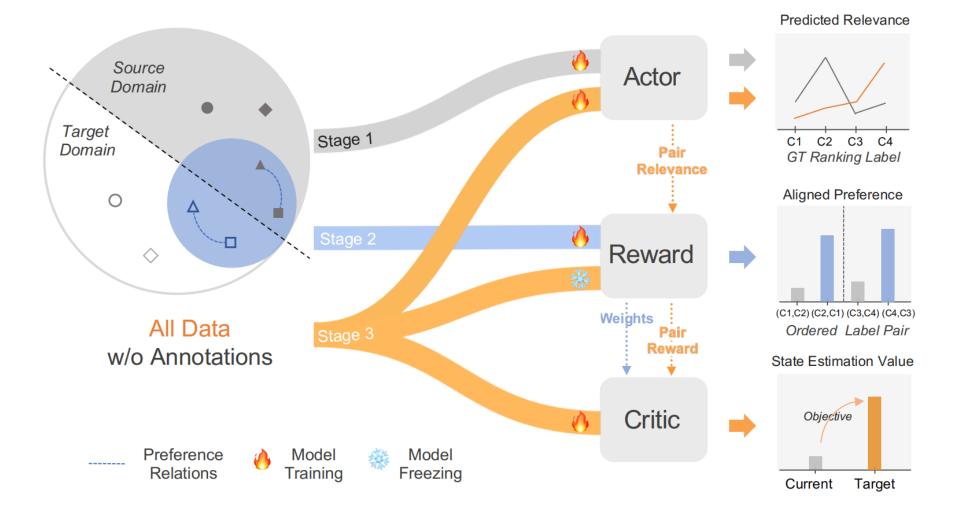


Fig. 2: Illustration of the training paradigm of LR2PPO. Each stage takes multimodal data as input but differs in terms of specific data division and annotation type. Technically, in Stage 1, data from the source domain is employed to establish a label relevance ranking base model (i.e., *Actor*). Stage 2 involves preference data to train a *Reward* model. Finally, in Stage 3, *Critic* model interacts with the first two models and all data w/o annotations is utilized to boost the performance of the *Actor*, which will solely be applied in the inference stage.

Stage 1 and Stage 2 of LR²PPO Framework

Stage 1. Label Relevance Ranking Base Model.

During Stage 1, the training of the label relevance ranking base model adopts a supervised paradigm, i.e., it is trained on the source domain based on manually annotated relevance categories (high, medium and low). SmoothL1Loss is calculated for optimization:

$$L_{\text{SmoothL1}}(p) = \begin{cases} 0.5(p-y)^2/\beta & \text{if } |p-y| < \beta \\ |p-y| - 0.5\beta & \text{otherwise,} \end{cases}$$

Stage 2. Reward Model.

• We train a reward model on the target domain in stage 2. With a few label pair annotations on the target domain, along with augmented pairs sampled from the source domain, the reward model can be trained to assign rewards to the partial order relationships between label pairs of a given clip. This kind of partial order relation annotation aligns with human preference of label relevance ranking, thus benefiting relevance ranking performance with limited annotation data. The loss function adopted for the training:

 $L_{RM}(g_{ini}, g_c) = \max(0, m_R - (R([g_{ini}, g_c]) - R([g_{ini}, flip(g_c)]))),$

Stage 3 of LR²PPO Framework

Stage 3. LR²PPO. State Definition and More

- \Box State s_t: the order of a group of labels (specifically, a label pair) at timestep t
- \Box Action a_{f} : the policy network (aka. actor model) predicts the relevance score of the labels and ranks them from high to low to obtain a new label order as next state s_{t+1} , which is considered a state transition, or action a_t
- **D** Policy π_{θ} : the forementioned process of state transition
- \Box Reward r_t: obtained by the reward model with state s_t and action a_t as inputs
- **Stage 3. LR²PPO. Policy Loss Definition and More**
- **D** Representation for the Change in Label Order: complete probability vector, i.e., state transition, instead of the maximum component
- **D** Partial Order Function Definition: $H_{partial}(p_t^1, p_t^2) = \max(0, m (p_t^1 p_t^2)),$
- **D** Partial Order Ratio $\mathbf{r}_{t}'(\theta)$ as Adjustment for Advantage: **D** Policy Function Loss: $L_{LR^{2}PPO}^{PF}(\theta) = -\mathbb{E}_{t}\left(r_{t}'(\theta)abs(\hat{A}_{t})\right)$. $r_{t}'(\theta) = \begin{cases} -H^{partial}(p_{t}^{1}, p_{t}^{2}) & \hat{A}_{t} \geq \delta \\ -H^{partial}(p_{t}^{2}, p_{t}^{1}) & \hat{A}_{t} < \delta. \end{cases}$

Procedure of LR²PPO Core Algorithm

Algorithm 1 Label Relevance Ranking with Proximal Policy Optimization (LR^2PPO) , Actor-Critic Style

Input: Policy network $\pi_{\theta_{\text{old}}}$, state value network $V_{\omega_{\text{old}}}$, number of timesteps T, number of trajectories in an iteration N_{Trajs} , number of epochs K, minibatch size M **Output:** Policy network parameter θ , state value network parameter ω

1: Initialization:

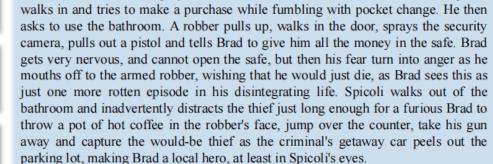
- 2: Initialize θ_{old} and ω_{old} with base model and reward model
- 3: LOOP Process
- 4: for iteration = 1, 2, ... do
- for $n_{\text{traj}} = 1, 2, \ldots, N_{\text{Trajs}}$ do 5:
- Run policy $\pi_{\theta_{\text{old}}}$ and state value network $V_{\omega_{\text{old}}}$ in environment for T timesteps 6:
- Compute advantage estimates $\hat{A}_1, \ldots, \hat{A}_T$ according to Eq. (6) 7:
- 8: end for
- Compute joint loss $L_{\rm LR^2PPO}$ according to Eq. (11) 9:
- Optimize surrogate L_{LR^2PPO} with respect to θ and ω , with K epochs and mini-10: batch size $M \leq N_{\text{Trajs}} \cdot T$
- 11: $\theta_{\text{old}} \leftarrow \theta, \, \omega_{\text{old}} \leftarrow \omega$
- 12: end for
- 13: return: θ, ω

The pseudo-code of our LR²PPO is provided in Algorithm 1.

LRMovieNet Dataset

Meanwhile, Brad is working at his new job, the bottom rung on the high school

scale of after-school employment: a convenience store called Mi-T-Mart. Spicoli



High	robber convenience store local hero criminal escapes
Medium	security camera hot coffee new job cannot open safe
Low	thief distracted gun taken away getaway car change

Kevin Lomax (Keanu Reeves) is a successful defense attorney in Gainesville, Florida. After successfully defending a high school teacher, Gettys, who is accused of molesting a young girl named Barbara (Heather Matarazzo). He is celebrating with his wife Mary Ann (Charlize Theron) when he is approached by a representative for a New York law firm, Leamon Heath (Ruben Santiago-Hudson). The Lomaxes go to New York, and Kevin proves his expertise while picking a jury. A sharply-dressed John Milton (Al Pacino) watches him from afar. The next day, Kevin receives word that Gettys has been acquitted. More so, the jury only deliberated for 38 minutes before bringing in the verdict.

ccess	>	crowd	1	girl	>	archite
vyer	>	podium	- i -	celebrate	>	police
Í.	>	crowd		represent	>	microp
wd	>	faucet		success	>	clothin
urt	>	suit		crowd	>	archite

- ng
- ecture

Following the explosion, a congregation of Norsefire's elite meets in a secret conference with Adam Sutler, his face projected on a large screen. Included are Inspector Eric Finch of the police, Roger Dascomb of television broadcasting, Brian Etheridge of the auditory surveillance system, Peter Creedy of the secret police, and Conrad Heyer of the CCTV. Effectively and respectively, they make up the nose, mouth, ears, fingers, and eves of the government, with Sutler sitting at the brain. Sutler decrees that the destruction of The Old Bailey is to be announced as an impromptu demolition project to make way for a new building while an investigation ensues to find out who the man in the Fawkes mask is. While V's remains a mystery, Evey's identity is quickly discovered thanks to video surveillance and Sutler demands her capture and interrogation.

High	secret conference elite
Medium	interrogation video surve
Low	television broadcaster n

Ralph drives Pamela to Disneyland and they park on the property. Walt Disney greets them, exciting Ralph who has never met him in person; Pamela is not impressed though. The two walk through the park where young fans ask for Walt's autograph. Walt gives out pre-signed pictures, his method of dealing with attention when he goes to the park. Walt encourages the crowd to get Pamela's signature too and even though they happily offer her something to sign, she mockingly rejects them (possibly implying a case of inferiority complex).

amusement park	> vehicle	di
fans	> exciting	a
crowd	> black	a
rejects requests	> vehicle	la
inferiority complex	> garden	di

Fig. C.2: Annotated training samples in source and target domains. The red, blue and green labels listed in the upper subfigure represent low, medium and high in ground truth in the source domain, respectively. For each label pair in the lower subfigure, the left label are more relevant than the right in accordance with the video episode context (*i.e.*, descriptions and frames). Best viewed in color and zoomed in.

mystery identity | mask man

eillance | demand arrest | big screen

new building | government mouth

triver > seat > inferiority complex utograph musement park > laugh at augh at > wheel > garden river

(a) Source Domain

(b) Target Domain

LRMovieNet Dataset

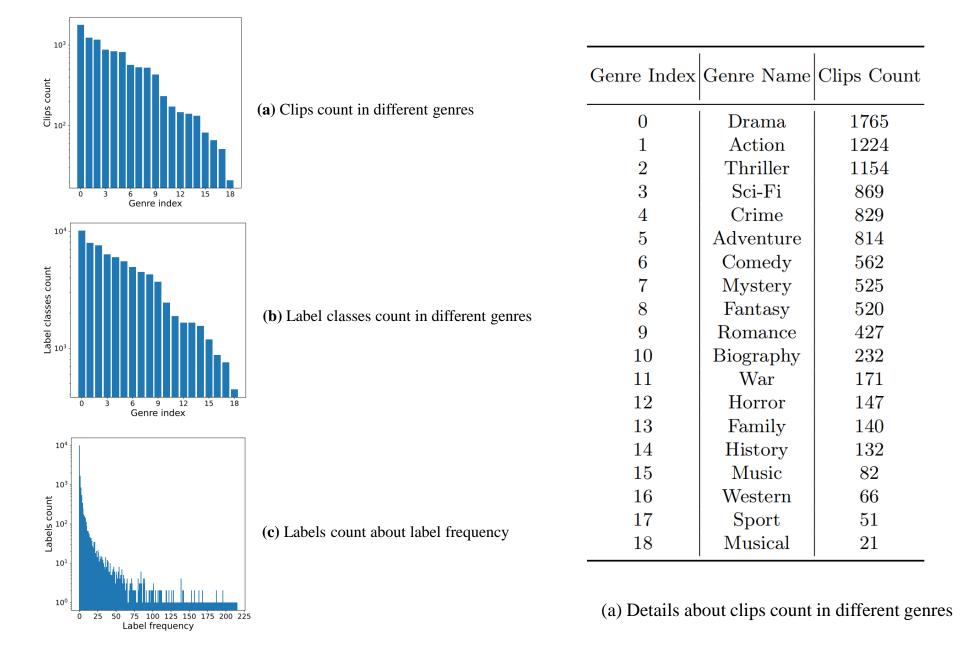


Fig. C.1: Data statistics of LRMovieNet.

Table C.1: Details about number of video clips and label classes in all videos of different genres in LRMovieNet.

Ger

	-	
enre Index	Genre Name	Classes Count
0	Drama	10088
1	Action	7923
2	Thriller	7573
3	Sci-Fi	6315
4	Adventure	5999
5	Crime	5542
6	Comedy	4933
7	Fantasy	4468
8	Mystery	4277
9	Romance	3688
10	Biography	2443
11	War	1879
12	Horror	1658
13	History	1652
14	Family	1543
15	Music	1191
16	Western	872
17	Sport	757
18	Musical	446

(b) Details about label classes count in different genres

Results on LRMovieNet Dataset

Method		NDCG @ 1	NDCG@3	NDCG@5	NDCG@10	NDCG@20
OV-based	CLIP 47 MKT 23	$0.5523 \\ 0.3517$	$\begin{array}{c c} 0.5209 \\ 0.3533 \end{array}$	$\begin{array}{c} 0.5271 \ 0.3765 \end{array}$	$0.6009 \\ 0.4704$	$0.7612 \\ 0.6774$
LTR-based	PRM [45] DLCM [1] ListNet [9] GSF [2] SetRank [44] RankFormer [8]	0.6320 0.6153 0.5947 0.594 0.6337 0.6350	$\begin{array}{c c} 0.6037 \\ 0.5807 \\ 0.5733 \\ 0.571 \\ 0.6038 \\ 0.6048 \end{array}$	$\begin{array}{c} 0.6083 \\ 0.5811 \\ 0.5787 \\ 0.579 \\ 0.6125 \\ 0.6108 \end{array}$	$\begin{array}{c} 0.6650 \\ 0.6310 \\ 0.6438 \\ 0.643 \\ 0.6658 \\ 0.6655 \end{array}$	$\begin{array}{c} 0.8022 \\ 0.7866 \\ 0.7872 \\ 0.787 \\ 0.8030 \\ 0.8033 \end{array}$
Ours	$\begin{vmatrix} LR^2 PPO & (S1) \\ LR^2 PPO \end{vmatrix}$	0.6330 0.6820	0.6018 0.6714	0.6061 0.6869	0.6667 0.7628	0.8021 0.8475

Table 1: State-of-the-art comparison for Label Relevance Ranking task on the LRMovieNet dataset.

 Bold indicates the best score.

Results on MSLR-Web10K \rightarrow MQ2008

Method	NDCG @ 1	NDCG@3	NDCG@5	NDCG@10	NI
\mathbf{PRM} [45]	0.5726	0.5804	0.5973	0.6407	(
DLCM 1	0.5983	0.6025	0.6125	0.6797	(
ListNet 9	0.5449	0.5575	0.5699	0.6324	(
$\operatorname{GSF}[2]$	0.6004	0.6265	0.6471	0.7054	(
SetRank 44	0.5299	0.5380	0.5555	0.6083	(
RankFormer [8]	0.5684	0.5511	0.5643	0.6164	(
$LR^{2}PPO$	0.6496	0.6830	0.7033	0.7710	C

Table 2: State-of-the-art comparison on traditional datasets for label relevance ranking on the MSLR-Web10K \rightarrow MQ2008 transferring task.

- DCG@20
- 0.7603
- 0.7744
- 0.7467
- 0.7892
- 0.7365
- 0.7458
- 0.8240

Influence of Key Designs of LR²PPO

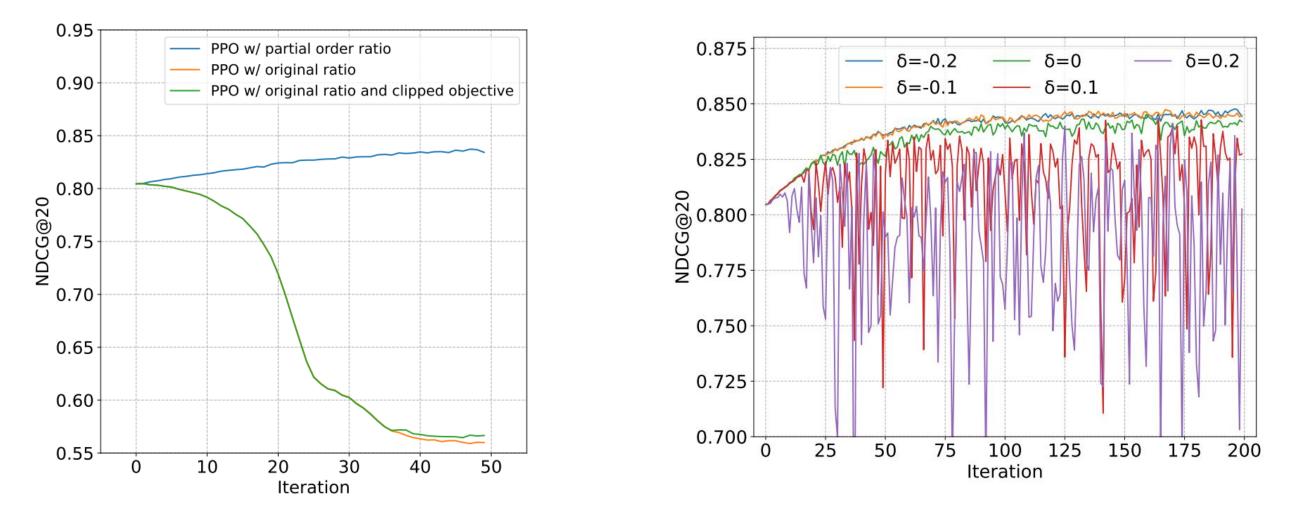


Fig. 3: NDCG curves during training. (a) PPO with different ratio design. Original ratio in PPO is not applicable to the definitions of state and action in the ranking task, leading to a training collapse, while our proposed partial order ratio solves this problem. (b) PPO with different thresholds δ in $r_t'(\theta)$. A small negative threshold $\delta = -0.1$ stabilizes the training, leading to superior performance.

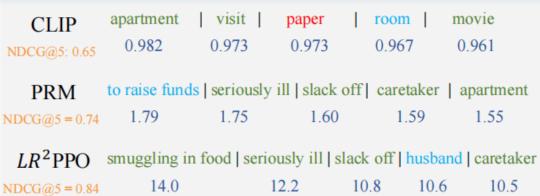
Influence of Annotation Proportion in Target Domain

Annotation Proportion	Reward Model Accuracy	NDCG@1	NDCG@3	NDCG@5	NDCG@10	NDCG@20
0%	-	0.6330	0.6018	0.6061	0.6667	0.8021
5%	0.7697	0.6787	0.6581	0.6770	0.7514	0.8416
10%	0.7757	0.6820	0.6714	0.6869	0.7628	0.8475
20%	0.7837	0.6800	0.6784	0.6980	0.7667	0.8506
40%	0.7866	0.6830	0.6682	0.6877	0.7617	0.8467

Table 3: Stage 2 and 3 results with different annotation proportions in target domain.

Qualitative Assessment

Wladek goes to the emergency address he was given, where he surprisingly meets Dorota, who is now married, pregnant, and her brother dead. Dorota and her husband hide Wladek in another vacant apartment, where there is a piano, but his new caretaker, Szalas, is very slack about smuggling in food, and Wladyslaw once more faces starvation, and at one point almost dies of jaundice. Dorota and her husband visit him, finding him gravely ill. They report that Szalas had been collecting money from generous and unwitting donors and had pocketed it all, leaving Wladek to die in isolation.



Enraged, Diane hired Joe, a hit-man, to kill Camilla. Diane paid Joe the cash and showed him Camilla's headshot at Winkie's, where a waitress named Betty served them and a customer Diane dreamt as Dan watched them arrange the hit. Joe tells Diane that once he has completed the job, he will leave a blue key in her apartment -- the exact key that Diane has now found.

CLIP NDCG@5: 0.43	coffee 0.989	apartment 0.985	hair 0.985	refer to 0.984	coffee shop 0.979
PRM NDCG@5 = 0.53	1.60	coffee shop 1.24	apartment 1.18	enraged 1.01	dining room 0.910
	apartment 11.5	cash 10.6	customer 10.6	enraged 10.4	key 10.1

Fig.4: Comparison between LR²PPO and other state-of-the-art ranking methods. The red, blue and green labels listed after the method represent low, medium and high in ground truth, respectively. The value below each label represents the corresponding relevance score.

Main Contributions

- \blacktriangleright We recognize the significant role of label relevance, and analyze the limitations of previous ranking methods when dealing with label relevance. To solve this problem, we propose a multimodal label relevance ranking approach to rank the labels according to the relevance between label and the multimodal input. This the first work to explore the ranking in the perspective of label relevance.
- \succ To better generalize the capability to new scenarios, we design a paradigm that transfers label relevance ranking ability from the source domain to the target domain. Besides, we propose the LR²PPO (Label Relevance Ranking with Proximal Policy Optimization) to effectively mine the partial order relations among labels.
- \succ To better evaluate the effectiveness of LR²PPO, we annotate each video clip with corresponding class labels and their relevance order of the MovieNet dataset, and develop a new multimodal label relevance ranking bench-mark dataset, LRMovieNet (Label Relevance of MovieNet). Comprehensive experiments on this dataset and traditional LTR datasets demonstrate the effectiveness of our proposed LR²PPO algorithm.

Thank you for listening

https://arxiv.org/abs/2407.13221

https://github.com/ChazzyGordon/LR2PPO