Bidirectional Uncertainty-Based Active Learning for Open-Set Annotation

Chen-Chen Zong**¹** , Ye-Wen Wang**¹** , Kun-Peng Ning**²** , Hai-Bo Ye**¹** , Sheng-Jun Huang**1***

¹Nanjing University of Aeronautics and Astronautics ²Peking University

*huangsj@nuaa.edu.cn

Bidirectional Uncertainty-Based Active Learning for Open-Set Annotation 1

- \Box The Framework of BUAL
- \Box Random Label Negative Learning
- **□** Bidirectional Sampling Strategy
- \blacksquare Experiments

- **The Framework of BUAL**
- **□ Random Label Negative Learning**
- **□** Bidirectional Sampling Strategy
- **Experiments**

Active Learning

unlabeled data

Goal: train an effective model with least labeling cost

Open-Set Annotation

Known class: color images with border

Unknown class: gray-scale images without border

■ Active learning in open set scenarios presents a novel challenge of identifying the most valuable examples in an unlabeled data pool that comprises data from both known and unknown classes.

- \Box Traditional active learning methods prioritize selecting informative examples with low confidence, with the risk of *mistakenly selecting unknown-class examples* with similarly low confidence.
- \Box Recent open-set annotation methods favor the most probable known class examples, with the risk of *picking simple already mastered examples*.

Can we effectively distinguish the "informative" examples of known classes from examples of unknown classes?

- \Box The Framework of BUAL
- **□ Random Label Negative Learning**
- **□** Bidirectional Sampling Strategy
- **Experiments**

The Framework of BUAL

BUAL: Bidirectional Uncertainty-based Active Learning framework

Three components

- Model training
- Example selection
- Oracle labeling

Two core contributions

- Random label negative learning (RLNL)
- Bidirectional sampling strategy

O Motivation **The Framework of BUAL** \Box Random Label Negative Learning **□** Bidirectional Sampling Strategy

Can we effectively distinguish the "informative" examples of known classes from examples of unknown classes?

Pushing unknown class examples toward regions with highconfidence predictions.

Random Label Negative Learning

We achieve this!!!

✓ We *randomly assign labels* to unlabeled examples in each training round and finetune the target model using the *negative learning* loss performed on them and already labeled examples.

$$
\ell_{NL} (f, \bar{y}) = -\sum_{k=1}^{K} \bar{y}_k \log (1 - p_k)
$$

Why RLNL works?

- \checkmark Once unlabeled known class examples receive the correct labels, they suffer a larger penalty and are reduced confidence predictions by the model since they deviate from the distribution information obtained from labeled data.
- \checkmark In contrast, unlabeled unknown class examples will oscillate at uncharted away from the decision boundary to counteract the update gradient produced by the labeled data.

Possible update scenario for unlabeled unknown class examples

Bidirectional Uncertainty-Based Active Learning for Open-Set Annotation

Why RLNL works?

Bidirectional Uncertainty-Based Active Learning for Open-Set Annotation

- **The Framework of BUAL**
- **□ Random Label Negative Learning**
- **□** Bidirectional Sampling Strategy
- **Experiments**

Bidirectional Sampling Strategy

Design Criteria

- The negative head is slightly biased for the measurement due to the unstable training. Thus, if an example is likelier to belong to known classes, we prefer to utilize the sample uncertainty obtained from positive head.
- Once an example has a higher risk of belonging to the unknown classes, the uncertainty obtained from positive head is unreliable, and thus the uncertainty produced by the negative head should be given a higher weight.

$$
\boldsymbol{x}^* = arg \max_{\boldsymbol{x}} p_{K+1}^{aux}(\boldsymbol{x}) u n c_n + r \left[1 - p_{K+1}^{aux}(\boldsymbol{x})\right] u n c_p
$$

 r represent the precision of known classes p_{K+1}^{aux} is the probability on unknown class

We can expand the existing uncertainty-based active learning methods to complex and ever-changing open-set scenarios.

Bidirectional Sampling Strategy

• Bidirectional Least Confident Sampling

$$
\boldsymbol{x}^* = \argmax_{\boldsymbol{x}} p_{K+1}^{aux}(\boldsymbol{x}) \left[1 - \boldsymbol{\mathcal{P}}_{y^-}^-(\boldsymbol{x}) \right] + r \left[1 - p_{K+1}^{aux}(\boldsymbol{x}) \right] \left[1 - \boldsymbol{p}_{y^+}^+(\boldsymbol{x}) \right],
$$

where $y^- = \argmax_y \boldsymbol{\mathcal{P}}_y^-(\boldsymbol{x}), y^+ = \argmax_y \boldsymbol{p}_y^+(\boldsymbol{x}).$

• Bidirectional Margin-Based Sampling

$$
\begin{aligned} \boldsymbol{x}^* = & \argmax_{\boldsymbol{x}} p_{K+1}^{aux}(\boldsymbol{x}) \left[\boldsymbol{\mathcal{P}}_{y_1^-}^-(\boldsymbol{x}) - \boldsymbol{\mathcal{P}}_{y_2^-}^-(\boldsymbol{x}) \right] \\ & + r \left[1 - p_{K+1}^{aux}(\boldsymbol{x}) \right] \left[\boldsymbol{p}_{y_1^+}^+(\boldsymbol{x}) - \boldsymbol{p}_{y_2^+}^+(\boldsymbol{x}) \right], \end{aligned}
$$

where $y_1^- = \arg \max_y \mathcal{P}_y^-(x)$, $y_1^+ = \arg \max_y p_y^+(x)$ $y_2^- = \arg \max_{y \setminus y_1^-} \mathcal{P}_y^-(x)$, y_2^+ = $\arg \max_{y \setminus y_1^+} p_y^+(x)$.

• Bidirectional Entropy-Based Sampling

$$
\begin{aligned} \boldsymbol{x}^* = & \argmax_{\boldsymbol{x}} p_{K+1}^{aux}(\boldsymbol{x}) \left[-\boldsymbol{\mathcal{P}}_{y^-}^{-}(\boldsymbol{x}) \log \boldsymbol{\mathcal{P}}_{y^-}^{-}(\boldsymbol{x}) \right] \\ & + r \left[1 - p_{K+1}^{aux}(\boldsymbol{x}) \right] \left[-\boldsymbol{p}_{y^+}^{+}(\boldsymbol{x}) \log \boldsymbol{p}_{y^+}^{+}(\boldsymbol{x}) \right], \end{aligned}
$$

where y^- and y^+ are consistent with the previous definition.

Bidirectional Sampling Strategy

• Bidirectional Least Confident Sampling

$$
\boldsymbol{x}^* = \argmax_{\boldsymbol{x}} p_{K+1}^{aux}(\boldsymbol{x}) \left[1-\boldsymbol{\mathcal{P}}_{y^-}^-(\boldsymbol{x})\right] + r\left[1-p_{K+1}^{aux}(\boldsymbol{x})\right] \left[1-\boldsymbol{p}_{y^+}^+(\boldsymbol{x})\right],
$$

where y^- = $\arg \max_y \mathcal{P}_y^-(x)$, y^+ = $\arg \max_y p_y^+(x)$.

• Bidirectional Margin-Based Sampling

$$
\boldsymbol{x}^* = \argmax_{\boldsymbol{x}} p_{K+1}^{aux}(\boldsymbol{x}) \left[\boldsymbol{\mathcal{P}}_{y_1^-}^-(\boldsymbol{x}) - \boldsymbol{\mathcal{P}}_{y_2^-}^-(\boldsymbol{x}) \right] + r\left[1-p_{K+1}^{aux}(\boldsymbol{x})\right] \left[\boldsymbol{p}_{y_1^+}^+(\boldsymbol{x}) - \boldsymbol{p}_{y_2^+}^+(\boldsymbol{x}) \right],
$$

where y_1^- = $\arg \max_y \mathcal{P}_y^-(x)$, y_1^+ = $\arg \max_y p_y^+(x)$ y_2^- = $\arg \max_{y \setminus y_1^-} \mathcal{P}_y^-(x)$, y_2^+ = arg max_{$y \setminus y_1^+$} $p_y^+(x)$.

• Bidirectional Entropy-Based Sampling

$$
\boldsymbol{x}^* = \argmax_{\boldsymbol{x}} p_{K+1}^{aux}(\boldsymbol{x}) \left[-\boldsymbol{\mathcal{P}}_{y^-}^-(\boldsymbol{x}) \log \boldsymbol{\mathcal{P}}_{y^-}^-(\boldsymbol{x}) \right] + r\left[1-p_{K+1}^{aux}(\boldsymbol{x})\right] \left[-\boldsymbol{p}_{y^+}^+(\boldsymbol{x}) \log \boldsymbol{p}_{y^+}^+(\boldsymbol{x}) \right],
$$

where y^- and y^+ are consistent with the previous definition.

- **The Framework of BUAL**
- **□ Random Label Negative Learning**
- **□** Bidirectional Sampling Strategy
- **O** Experiments

Figure 6: Accuracy comparison on CIFAR-10 (first column), CIFAR-100 (second column), and Tiny-Imagenet (third column). The ratio of unknown class examples to the total number of examples is fixed at 0.4 (first row) and 0.6 (second row) for each dataset. The results of 0.2 and 0.8 openness ratios are shown in the supplementary file.

Table 1: The final round average accuracy of different methods on CIFAR-10, CIFAR-100, and Tiny-Imagenet. The best performance is highlighted in bold.

Datasets		$CIFAR-10$				CIFAR-100				Tiny-Imagenet			
Openness Ratio		$0.2\,$	0.4	0.6	0.8	$0.2\,$	$0.4\,$	0.6	0.8	0.2	0.4	0.6	0.8
(1) Random		83.3	82.5	87.2	96.9	57.6	58.3	58.7	61.2	45.7	47.2	50.9	55.0
(2)	$_{\rm LC}$ Margin Entropy	84.3 86.0 85.4	81.6 84.1 83.4	87.5 89.0 88.0	96.2 97.0 96.8	55.8 59.3 57.1	54.6 59.6 56.8	54.0 58.8 55.7	56.2 58.9 56.4	44.8 46.4 44.6	45.9 47.1 44.5	48.4 50.8 46.9	51.6 54.0 50.7
(3)	Coreset	85.0	81.8	86.4	97.4	60.2	61.2	61.8	64.2	46.2	47.8	51.8	54.0
(4)	BADGE	86.8	84.2	89.2	96.4	60.2	60.8	60.4	62.0	46.3	47.8	51.8	53.3
(5)	LfOSA CCAL	73.7 80.8	78.7 81.5	87.0 88.0	98.6 98.1	52.3 55.9	56.6 60.0	62.4 64.7	68.2 67.7	42.5 44.4	46.6 46.3	52.4 50.3	59.9 57.0
(6)	DIAS	81.8	80.7	83.0	94.0	55.7	56.1	56.9	57.2	43.1	45.1	47.5	54.4
Ours	$B-LC$ B-Margin B-Entropy	87.0 86.5 86.9	87.2 87.0 87.4	92.5 92.6 92.6	99.1 98.9 99.1	59.3 60.9 58.9	62.8 63.1 61.7	67.5 68.3 66.9	72.1 71.5 71.4	45.7 46.5 45.4	48.7 49.5 47.5	54.7 55.7 55.2	60.6 61.2 61.0

Fig. 7: The average recognition rate on CIFAR-10 (first column), CIFAR-100 (second column), and Tiny-Imagenet (third column).

Fig. 8: The t-SNE feature visualization of data from one query and labeled pool on CIFAR-10 with an openness ratio of 0.5.

Table 2: Final accuracy of each component in Equation 3 on CIFAR-10, CIFAR-100, and Tiny-Imagenet with an openness ratio of 0.6.

Bidirectional Uncertainty-Based Active Learning for Open-Set Annotation