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Active Learning
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Goal: train an effective model with least labeling cost
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Open-Set Annotation
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O Active learning in open set scenarios presents a novel challenge of
identifying the most valuable examples in an unlabeled data pool
that comprises data from both known and unknown classes.

Bidirectional Uncertainty-Based Active Learning for Open-Set Annotation


https://openaccess.thecvf.com/content/CVPR2022/papers/Ning_Active_Learning_for_Open-Set_Annotation_CVPR_2022_paper.pdf

[ Traditional active learning methods prioritize selecting informative
examples with low confidence, with the risk of mistakenly
selecting unknown-class examples with similarly low confidence.

[0 Recent open-set annotation methods favor the most probable

known class examples, with the risk of picking simple already
mastered examples.

Can we effectively distinguish the "informative" examples of
known classes from examples of unknown classes?
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The Framework of BUAL

BUAL: Bidirectional Uncertainty-based Active Learning framework
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0 Three components 0 Two core contributions
* Model training  Random label negative learning (RLNL)
* Example selection e Bidirectional sampling strategy

* Oracle labeling
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Random Label Negative Learning

Can we effectively distinguish the "informative" examples of
known classes from examples of unknown classes?

U

Pushing unknown class examples toward regions with high-
confidence predictions.
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Random Label Negative Learning

We achieve this!!!
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v' We randomly assign labels to unlabeled examples in each
training round and finetune the target model using the negative
learning loss performed on them and already labeled examples.

Ine (£,9) = — Sy T log (1 — i)
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Why RLNL works?

v" Once unlabeled known class examples receive the correct
labels, they suffer a larger penalty and are reduced confidence
predictions by the model since they deviate from the
distribution information obtained from labeled data.

v In contrast, unlabeled unknown class examples will oscillate at
uncharted away from the decision boundary to counteract the
update gradient produced by the labeled data.

Decision boundary

purple green
- - Iteration 2 _
gradient gradient Iteration 3 _
by by the [teration 4
labeled example ) Local ©——@
examples itself Iteration n oscillation :__:

Possible update scenario for unlabeled unknown class examples
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Why RLNL works?
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Bidirectional Sampling Strategy

0 Design Criteria

 The negative head is slightly biased for the measurement due to the
unstable training. Thus, if an example is likelier to belong to known classes,
we prefer to utilize the sample uncertainty obtained from positive head.

* Once an example has a higher risk of belonging to the unknown classes,
the uncertainty obtained from positive head is unreliable, and thus the
uncertainty produced by the negative head should be given a higher weight.

r* = arg ma?xp‘};”fl(m)uncn + 1 |1 — pit (x)] unc,

r represent the precision of known classes px+1 is the probability on unknown class

We can expand the existing uncertainty-based active learning
methods to complex and ever-changing open-set scenarios.
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Bidirectional Sampling Strategy

e Bidirectional Least Confident Sampling
x" = argmax pi () [1 - P, (.’B)] +r 1 - pii(z)] {1 — p;'+ (m)] :
where y~ = argmax, P (x), y* = argmax, p,f (z).
e Bidirectional Margin-Based Sampling

x* =argmax pi’, (x) [’P;l_ (x) — P;; (m)}

w1 (1= @) [Pl (@) —pl (@)
where y; = argmax, P, (), y, = arg max, P;- (x) y, = arg Iax, \ - P, (),
yy = arg max,, ,+ p, ().

e Bidirectional Entropy-Based Sampling

" =arg max piy () [—'Py__ (z)log P (m)}

+r [1 = pRii ()] [—p;}(ﬂf) log p, (fﬂ)] :

where y~ and y* are consistent with the previous definition.
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Bidirectional Sampling Strategy

e Bidirectional Least Confident Sampling
2" = argmaxpilf, (@) |1 - P, (2)| +7 [1 - sy ()] [1 - pf (@),
€L
where y~ = argmax, P, (), y© = argmax, p;} ().

e Bidirectional Margin-Based Sampling

@* =arg maxpif, (x) [’P;_ (@)~ P, (m)} +r[1—p2e ()] [p+ (x) — p, (:13)] ,

1 y;r Y2
where y; = argmax, P, (), y! = arg max, p,} (€) y, = argmax

Yy = arg max,, , + p, ().

y\yl_ ‘P’; (m):

e Bidirectional Entropy-Based Sampling

x* =arg max pi‘, () [—”P;_ (z)log P, _ (m)} +r[1— pRii ()] [—p;’+ () log p;. (m)] ,

T

where y~ and y* are consistent with the previous definition.
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Experiments
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Figure 6: Accuracy comparison on CIFAR-10 (first column), CIFAR-100 (second column), and Tiny-Imagenet (third column). The ratio of
unknown class examples to the total number of examples is fixed at 0.4 (first row) and 0.6 (second row) for each dataset. The results of 0.2
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and 0.8 openness ratios are shown in the supplementary file.
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Experiments

Table 1: The final round average accuracy of different methods on CIFAR-10, CIFAR-
100, and Tiny-Imagenet. The best performance is highlighted in bold.

Datasets ‘ CIFAR-10 | CIFAR-100 | Tiny-Imagenet
Openness Ratio | 0.2 04 0.6 08 |02 04 06 08|02 04 06 038
(1) | Random |83.3 825 87.2 96.9 |57.6 583 58.7 61.2|45.7 47.2 50.9 55.0

LC 84.3 81.6 87.5 96.2|55.8 54.6 54.0 56.2 [ 44.8 459 484 51.6
(2) Margin | 86.0 84.1 89.0 97.0 | 59.3 59.6 58.8 58.9 [46.4 47.1 50.8 54.0
Entropy | 854 83.4 88.0 96.8 | 57.1 56.8 55.7 56.4|44.6 44.5 46.9 50.7

(3) | Coreset |85.0 81.8 86.4 97.4|60.2 612 61.8 642|462 47.8 518 54.0
(4) | BADGE |86.8 842 89.2 96.4|60.2 60.8 60.4 62.0|46.3 478 518 53.3

(5) LfOSA | 73.7 787 87.0 98.6 | 52.3 56.6 62.4 68.2|42.5 46.6 524 59.9
CCAL 80.8 81.5 88.0 98.1| 559 60.0 64.7 67.7 | 44.4 46.3 50.3 57.0

(6) | DIAS |81.8 80.7 83.0 94.0 |55.7 56.1 56.9 57.2|43.1 45.1 47.5 544

B-LC 87.0 87.2 92,5 99.1|59.3 62.8 67.5 72.1[45.7 48.7 54.7 60.6
Ours | B-Margin | 86.5 87.0 92.6 98.9 |60.9 63.1 68.3 71.5|46.5 49.5 55.7 61.2
B-Entropy | 86.9 87.4 92.6 99.1| 589 61.7 66.9 714|454 475 552 61.0
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Fig. 7: The average recognition rate on CIFAR-10 (first column

column), and Tiny-Imagenet (third column).
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Experiments

® Labeled data
A Queried data

(a) LfOSA (b) BUAL (ours)

Fig. 8: The t-SNE feature visualization of data from one query and labeled pool on
CIFAR-10 with an openness ratio of 0.5.
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Experiments

Table 2: Final accuracy of each component in Equation 3 on CIFAR-10, CIFAR-100,
and Tiny-Imagenet with an openness ratio of 0.6.

N unc, | une, | w/ow | w/o fauz | B-LC
CIFAR-10 87.5 89.4 90.8 91.3 92.5
CIFAR-100 54.0 63.5 62.4 65.0 67.5

Tiny-Imagenet 484 | 523 | 520 53.0 54.7
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