Open-set Domain Adaptation via Joint Error based Multi-class Positive and Unlabeled Learning ECCV 2024

Dexuan Zhang¹, Thomas Westfechtel¹, Tatsuya Harada^{1,2}

¹The University of Tokyo, ²RIKEN

September 10, 2024

Problem Setting

Figure: Given labeled data from source domain $S' : \mathcal{X} \times (\mathcal{Y}' = \{1, ..., K - 1\})$, and unlabeled data from target domain $T : \mathcal{X} \times (\mathcal{Y} = \{1, ..., K\})$, the goal is to learn a target classifier $h : \mathcal{X} \to \mathcal{Y}$.

Remark

- · OSDA can be considered as PU with covariate shift where $P_{S'}(x|y) \neq P_T(x|y)$ for $y \in \mathcal{Y}'$
- $\cdot\,$ PU learning can be applied in OSDA if the gap is bridged

PU Learning induced Joint Error based OSDA (PUJE)

Theorem (Approximated Joint Error based Target Upper Bound)

Given $\mathcal{K} = \{k | k \in \mathbb{R}^{K} : \sum_{y \in \mathcal{Y}} k[y] = 1, k[y] \in [0, 1]\}$, let $f_{S}, f_{T} : \mathcal{X} \to \mathcal{K}$ be the true labeling functions for the source and target domains and $\epsilon : \mathcal{K} \times \mathcal{K} \to \mathbb{R}$ denote a distance metric and $\epsilon_{D}(f, f') := \mathbb{E}_{x \sim D} \epsilon(f(x), f'(x))$ measure the expected disagreement between the outputs of $f, f' : \mathcal{X} \to \mathcal{K}$. For $\forall f_{S}^{*}, f_{T}^{*}, h \in \mathcal{H} : \mathcal{X} \to \mathcal{K}$, the expected target error is bounded by $\epsilon_{T}(h) \leq \epsilon_{S}(h) + \epsilon_{T}(f_{S}^{*}, f_{T}^{*}) + \epsilon_{T}(h, f_{S}^{*}) - |\epsilon_{S}(f_{S}^{*}, f_{T}^{*}) - \epsilon_{S}(h, f_{T}^{*})| + \theta$ $\theta = 2\epsilon_{T}(f_{S}, f_{S}^{*}) + \epsilon_{S}(f_{S}, f_{S}^{*}) + 2\epsilon_{S}(f_{T}^{*}, f_{T}) + \epsilon_{T}(f_{T}^{*}, f_{T}) = \theta_{f_{S}} + \theta_{f_{T}}$

Assumption (1)

Assume that there exists approximated labeling functions f_S^*, f_T^* such that the empirical deviations $\hat{\theta}_{f_S}, \hat{\theta}_{f_T}$ measured on finite samples \hat{S}, \hat{T} are close enough to zero.

Multi-class PU Learning

Definition (Unknown Predictive Discrepancy)

Let $v: \mathcal{K} \times \mathcal{K} \to \mathbb{R}$ denote the Unknown Predictive Discrepancy as a distance metric and $v_D(f, f') := \mathbb{E}_{x \sim D} v(f(x), f'(x))$ measure the expected disagreement between the K-th outputs of $f, f': \mathcal{X} \to \mathcal{K}$. Let $e^{\mathcal{K}}: \mathcal{X} \to [0, ..., 1] \in \mathcal{K}$ denote a function that can predict any input as unknown. The deviation from $e^{\mathcal{K}}$ for a hypothesis $h \in \mathcal{H}$ is referred to as the shorthand $v_D(h) := v_D(h, e^{\mathcal{K}})$ that measures the probability that samples from D have not been classified as unknown.

Assumption (2)

Let $S^{i} = P_{S}(x|y = i)$, $T^{i} = P_{T}(x|y = i)$ denote class conditional distributions, $S' = P_{S}(x|y \neq K)$, $T' = P_{T}(x|y \neq K)$ indicate incomplete domains that do not contain unknown class S^{K} , T^{K} . Given a feature extractor $g : \mathcal{X} \to \mathcal{Z}$, assume that the feature space can be aligned: $P_{S^{K}}(z) = P_{T^{K}}(z)$, $P_{S'}(z) = P_{T'}(z)$.

Lemma (Estimated Source Error and Discrepancy)

Let $\sum_{i=1}^{K} \pi_{S}^{i} = 1$, $\sum_{i=1}^{K} \pi_{T}^{i} = 1$ denote the label distribution of S and T respectively. Given feature extractor g, approximated labeling functions can be decomposed such that $f_{S}^{*} = f_{S}^{*} \circ g$, $f_{T}^{*} = f^{*} \circ g$. Given Assumption (2), the expected error on S can be estimated by the error on S' and Unknown Predictive Discrepancy on T with a mild condition that $\pi_{S}^{K} = \pi_{T}^{K} = 1 - \alpha$:

$$\begin{aligned} \epsilon_{S}(h \circ g) &= \alpha [\epsilon_{S'}(h \circ g) - v_{S'}(h \circ g)] + v_{T}(h \circ g) \\ \epsilon_{S}(f_{S}^{\star} \circ g, f_{T}^{\star} \circ g) &= \alpha [\epsilon_{S'}(f_{S}^{\star} \circ g, f_{T}^{\star} \circ g) - v_{S'}(f_{S}^{\star} \circ g, f_{T}^{\star} \circ g)] + v_{T}(f_{S}^{\star} \circ g, f_{T}^{\star} \circ g) \\ \epsilon_{S}(h \circ g, f_{T}^{\star} \circ g) &= \alpha [\epsilon_{S'}(h \circ g, f_{T}^{\star} \circ g) - v_{S'}(h \circ g, f_{T}^{\star} \circ g)] + v_{T}(h \circ g, f_{T}^{\star} \circ g) \end{aligned}$$

Mechanism

Figure: Intuitive explanation of the difference between PUJE and existing methods. (a) existing methods do not explicitly minimize joint error and cannot group unknown class as a single cluster; (b) our proposal is an upper bound of joint error which can address large domain shift and group unknown class into a single cluster.

Results

Figure: T-SNE visualization of feature distributions in (a)-(d): $Ar \rightarrow CI$ task (Office-Home dataset); (e)-(h): Syn2Real-O task.

Remark

 PUJE achieves a better alignment with a more discriminative class-wise decision boundary for unknown class, especially when the domain shift is large.

596