Open-set Domain Adaptation via Joint Error based Multi-class Positive and Unlabeled Learning ECCV 2024

Dexuan Zhang¹, Thomas Westfechtel¹, Tatsuya Harada^{1,2}

¹The University of Tokyo, ²RIKEN

September 10, 2024

Problem Setting

Figure: Given labeled data from source domain $S': \mathcal{X} \times (\mathcal{Y}' = \{1, ..., K - 1\})$, and unlabeled data from target domain $T: \mathcal{X} \times (\mathcal{Y} = \{1, ..., K\})$, the goal is to learn a target classifier $h: \mathcal{X} \rightarrow \mathcal{V}$.

Remark

- · OSDA can be considered as PU with covariate shift where $P_{S'}(x|y) \neq P_T(x|y)$ for $y \in \mathcal{Y}'$
- · PU learning can be applied in OSDA if the gap is bridged

 Q Q

PU Learning induced Joint Error based OSDA (PUJE)

Theorem (Approximated Joint Error based Target Upper Bound)

Given $\mathcal{K} = \{k | k \in \mathbb{R}^K : \sum_{y \in \mathcal{Y}} k[y] = 1, k[y] \in [0,1]\},$ let $f_S, f_T : \mathcal{X} \to \mathcal{K}$ be the true labeling functions for the source and target domains and $\epsilon : \mathcal{K} \times \mathcal{K} \to \mathbb{R}$ denote a distance metric and $\epsilon_D(f,f'):=\mathbb{E}_{\mathsf{x} \sim D} \, \epsilon(f(\mathsf{x}),f'(\mathsf{x}))$ measure the expected disagreement between the outputs of $f, f': \mathcal{X} \to \mathcal{K}$. For $\forall f^*_\mathcal{S}, f^*_\mathcal{T}, h\in\mathcal{H}:\mathcal{X}\rightarrow\mathcal{K}$, the expected target error is bounded by $\epsilon_{\mathcal{T}}(h) \leq \epsilon_{\mathcal{S}}(h) + \epsilon_{\mathcal{T}}(f^*_{\mathcal{S}}, f^*_{\mathcal{T}}) + \epsilon_{\mathcal{T}}(h, f^*_{\mathcal{S}}) - |\epsilon_{\mathcal{S}}(f^*_{\mathcal{S}}, f^*_{\mathcal{T}}) - \epsilon_{\mathcal{S}}(h, f^*_{\mathcal{T}})| + \theta$ $\theta = 2\epsilon_{\tau}(f_S, f_S^*) + \epsilon_S(f_S, f_S^*) + 2\epsilon_S(f_T^*, f_T) + \epsilon_T(f_T^*, f_T) = \theta_{f_S} + \theta_{f_T}$

Assumption (1)

Assume that there exists approximated labeling functions f^*_5, f^*_7 such that the empirical deviations $\hat{\theta}_{f_{\mathcal{S}}}, \hat{\theta}_{f_{\mathcal{T}}}$ measured on finite samples \hat{S} , \hat{T} are close enough to zero.

 QQ

Multi-class PU Learning

Definition (Unknown Predictive Discrepancy)

Let $v : \mathcal{K} \times \mathcal{K} \to \mathbb{R}$ denote the Unknown Predictive Discrepancy as a distance metric and $v_D(f,f'):=\mathbb{E}_{\mathsf{x} \sim D}\, v(f(\mathsf{x}),f'(\mathsf{x}))$ measure the expected disagreement between the K -th outputs of $f,f':\mathcal{X}\to\mathcal{K}.$ Let $e^\mathcal{K}:\mathcal{X}\to[0,...,1]\in\mathcal{K}$ denote a function that can predict any input as unknown. The deviation from $e^\mathcal{K}$ for a hypothesis $h \in \mathcal{H}$ is referred to as the shorthand $v_D(\mathit{h}) := v_D(\mathit{h},\mathit{e}^K)$ that measures the probability that samples from D have not been classified as unknown.

Assumption (2)

Let $S^i = P_S(x|y=i),$ $T^i = P_T(x|y=i)$ denote class conditional distributions, $S' = P_S(x|y \neq K)$, $T' = P_T(x|y \neq K)$ indicate incomplete domains that do not contain unknown class $\mathcal{S}^{\mathsf{K}}, \mathcal{T}^{\mathsf{K}}.$ Given a feature extractor $g: \mathcal{X} \to \mathcal{Z}$, assume that the feature space can be aligned: $P_{\varsigma K}(z) = P_{\tau K}(z)$, $P_{\varsigma'}(z) = P_{\tau'}(z)$.

 290

Lemma (Estimated Source Error and Discrepancy)

Let $\sum_{i=1}^K \pi_S^i = 1, \sum_{i=1}^K \pi_T^i = 1$ denote the label distribution of S and T respectively. Given feature extractor g, approximated labeling functions can be decomposed such that $f_{\mathcal{S}}^{*}=f_{\mathcal{S}}^{\star}\circ g, f_{\mathcal{T}}^{*}=f^{\star}\circ g$. Given Assumption (2), the expected error on S can be estimated by the error on S' and Unknown Predictive Discrepancy on T with a mild condition that $\pi_S^K = \pi_I^K = 1 - \alpha$:

$$
\epsilon_S(h \circ g) = \alpha[\epsilon_{S'}(h \circ g) - v_{S'}(h \circ g)] + v_{T}(h \circ g)
$$

$$
\epsilon_S(f_S^* \circ g, f_T^* \circ g) = \alpha[\epsilon_{S'}(f_S^* \circ g, f_T^* \circ g) - v_{S'}(f_S^* \circ g, f_T^* \circ g)] + v_{T}(f_S^* \circ g, f_T^* \circ g)
$$

$$
\epsilon_S(h \circ g, f_T^* \circ g) = \alpha[\epsilon_{S'}(h \circ g, f_T^* \circ g) - v_{S'}(h \circ g, f_T^* \circ g)] + v_{T}(h \circ g, f_T^* \circ g)
$$

Mechanism

Figure: Intuitive explanation of the difference between PUJE and existing methods. (a) existing methods do not explicitly minimize joint error and cannot group unknown class as a single cluster; (b) our proposal is an upper bound of joint error which can address large domain shift and group unknown class into a single cluster.

つくい

Results

Figure: T-SNE visualization of feature distributions in $(a)-(d)$: Ar \rightarrow Cl task (Office-Home dataset); (e)-(h): Syn2Real-O task.

Remark

· PUJE achieves a better alignment with a more discriminative class-wise decision boundary for unknown class, especially when the domain shift is large.

Dexuan Zhang, Thomas Westfechtel, Tatsuya Harada [U-Tokyo](#page-0-0) 7/7

つへへ