

Optimization-based Uncertainty Attribution Via Learning Informative Perturbations Hanjing Wang (RPI) , Bashirul Azam Biswas (RPI), and Qiang Ji (RPI)

- ➢ Bayesian deep learning (BDL) model
- Treat parameters θ as random variables

- ➢ Uncertainty quantification
	- Seek to determine the confidence in the predictions, given the imperfect inputs
	- UQ can make the model say "No" to the predictions.
	- Two types of uncertainty:
		- Epistemic uncertainty U_e captures the insufficient knowledge of the modeling process.
		- Aleatoric uncertainty U_a occurs due to the data noise.
		- Total uncertainty $U_t = U_a + U_e$
	- The measure of uncertainty: Denote x as the input and y as the output. Give a classification model that outputs $p(y|x, \theta)$, we have

Introduction

• Well-founded framework for uncertainty quantification (UQ).

 $\setminus n_3$

- ➢ Uncertainty attribution (UA)
- Focus on understanding and explaining the sources and causes of uncertainty.
- The proposed method localizes the high uncertain regions to determine "**where is wrong**"?
- **Challenges**
- Not well-explored area
- Current explainable AI methods focus on attribution of the classification score for deterministic neural networks
- Gradient-based UA is often noisy and hard to interpret.

Proposed Method: Optimization-based Uncertainty Attribution

➢ Basic Formulation:

 M : the binary mask that highlights areas in the inputs significantly contributing to uncertainty.

 $U:$ the function of uncertainty.

 \hat{x} : the perturbed input with reduced uncertainty.

- ➢ Three improvements:
	- ➢ SAM-guided Mask Parameterization
		- We parameterize M by a linear combination of segments derived from the pretrained Segment Anything model (SAM), i.e., $M = \sum_i w_i M_i$
		- Each segment M_i is inherently binary and delineate areas corresponding to semantically meaningful and human-understandable concepts.
	- ➢ Learnable Perturbation
		- \hat{x} is learned by $g_{\phi}(x)$ where $g_{\phi}(\cdot)$ is a blurring function parameterized by ϕ , allowing for the precise and dynamic adjustment of perturbations.
- ➢ Gumbel-sigmoid Reparameterization For Binary Weights
	- The Binary weight w_i is parameterized using Gumbel-sigmoid function to keep its binary nature under continuous optimization.

$$
p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}
$$

 $p(D)$

Quantitative Experiments

- ➢ Detection of Problematic Regions
- \triangleright Evaluate methods for detecting image anomalies with known problematic areas.
- \triangleright Quantitative metrics include Intersection over Un detection accuracy (ADA).
- ➢ Faithfulness Test
- \triangleright Faithfulness in uncertainty attribution quantifies the \triangleright method's explanations reflect the actual influence model's uncertainty.
- \triangleright We refine the most problematic pixels of the input, \triangleright updating 2% of the pixels with the highest UA score reduction in uncertainty after the alteration

$$
\mathcal{H}[p(y|x,D)] = I[y,\theta|x,D] + \mathbb{E}_{p(\theta|D)}[\mathcal{H}[p(y|x,\theta)]]
$$

Total
Epistemic
Aleatoric

$$
M^* = \arg\min_{M} U\big((1 - M) \bigodot x + M \bigodot \widehat{x}\big) + \lambda ||M||
$$

Uncertainty Attribution Maps Examples