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Introduction 

➢ Bayesian deep learning (BDL) model

• Treat parameters 𝜃 as random variables

• Well-founded framework for uncertainty

quantification (UQ). 

➢ Uncertainty quantification

• Seek to determine the confidence in the predictions, given 

the imperfect inputs

• UQ can make the model say “No” to the predictions.

• Two types of uncertainty:

• Epistemic uncertainty 𝑈𝑒 captures the insufficient 

knowledge of the modeling process.

• Aleatoric uncertainty 𝑈𝑎 occurs due to the data noise.

• Total uncertainty 𝑈𝑡 = 𝑈𝑎 + 𝑈𝑒
• The measure of uncertainty: Denote 𝑥 as the input and 𝑦 

as the output. Give a classification model that outputs 

𝑝(𝑦|𝑥, 𝜃), we have 

➢ Uncertainty attribution (UA)
• Focus on understanding and explaining the sources and 

causes of uncertainty.

• The proposed method localizes the high uncertain regions to 

determine “where is wrong”?

• Challenges

• Not well-explored area

• Current explainable AI methods focus on attribution of the 

classification score for deterministic neural networks

• Gradient-based UA is often noisy and hard to interpret. 

Proposed Method: Optimization-based Uncertainty Attribution

➢ Basic Formulation: 

➢ Three improvements:

➢ SAM-guided Mask Parameterization

• We parameterize 𝑀 by a linear combination of segments derived from the pre-

trained Segment Anything model (SAM), i.e., 𝑀 = σ𝑖𝑤𝑖𝑀𝑖

• Each segment 𝑀𝑖 is inherently binary and delineate areas corresponding to 

semantically meaningful and human-understandable concepts. 

➢ Learnable Perturbation

• ො𝑥 is learned by 𝑔𝜙(𝑥) where 𝑔𝜙(⋅) is a blurring function parameterized by 𝜙, 

allowing for the precise and dynamic adjustment of perturbations. 

➢ Gumbel-sigmoid Reparameterization For Binary Weights

• The Binary weight 𝑤𝑖 is parameterized using Gumbel-sigmoid function to keep its 

binary nature under continuous optimization. 

𝑝 𝜃 𝐷 =
𝑝 𝐷 𝜃 𝑝 𝜃

𝑝(𝐷)

Quantitative Experiments

➢ Detection of Problematic Regions

➢ Evaluate methods for detecting image anomalies using semi-synthetic data 

with known problematic areas.

➢ Quantitative metrics include Intersection over Union (IoU) and anomaly 

detection accuracy (ADA).

➢ Faithfulness Test

➢ Faithfulness in uncertainty attribution quantifies the accuracy with which a 

method’s explanations reflect the actual influence of input features on the 

model’s uncertainty. 

➢ We refine the most problematic pixels of the input, for example, by 

updating 2% of the pixels with the highest UA scores, and then observe the 

reduction in uncertainty after the alteration

ℋ 𝑝 𝑦 𝑥, 𝐷 = Ι 𝑦, 𝜃 𝑥, 𝐷 + 𝔼𝑝(𝜃|𝐷)[ℋ[𝑝(𝑦|𝑥, 𝜃)]] 

Total Epistemic Aleatoric

𝑀∗ = argmin
𝑀

𝑈 1 −𝑀 ⊙ 𝑥 +𝑀⊙ ො𝑥 + 𝜆||𝑀||

𝑀: the binary mask that highlights areas in the inputs significantly contributing to 

uncertainty.  

𝑈: the function of uncertainty.

ො𝑥: the perturbed input with reduced uncertainty. 

Uncertainty Attribution Maps Examples
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