

MILAN O

CLR-GAN: Improving GANs Stability and Quality via Consistent Latent Representation and Reconstruction

Shengke Sun^{1,*}, Ziqian Luan^{2,*}, Zhanshan Zhao^{1,3}, Shijie Luo¹, Shuzhen Han¹ (* Equal contribution)

Image Synthesis using GANs

- Pros
 - Fast inference
 - High qualty
 - Easy to edit

- Cons
 - Hard to train
 - Mode collapse

Related Works

Discriminator based

Build Hard Samples

Reconstruction based

Constrain Discriminator

Delve into the paradigm

- Gradient Perspective
 - All gradient comes from D
 - Training D first

Generated Sample

• Makes D a natural dominant

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}(x)} \left[log D(x) \right] + \mathbb{E}_{z \sim p_{z}(z)} \left[log (1 - D(G(z))) \right]$

Training Objective

Delve into the paradigm

- Data Perspective
 - Only D has access to data
 - G only update according to D
 - Gradient space more abstract

• G lacks of priors

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}(x)} \left[log D(x) \right] + \mathbb{E}_{z \sim p_{z}(z)} \left[log (1 - D(G(z))) \right]$

Training Objective

How to stablize training from the above perspectives?

Proposed Method—CLR-GAN

- To constrain the D using gradient from G
 - Reconstruction Loss

$$\mathcal{L}_{rec} = \frac{1}{n} \sum_{i=1}^{n} \|I(x) - I_{rec}\|_{1}$$

- To make G has access to real data distribution
 - Latent Consistency Loss

$$\mathcal{L}_{CLR} = \frac{1}{n} \sum_{i=1}^{n} \|z_i - \phi(x_i)\|_1$$

Theoretical Analysis

• Training D with fixed G

 $\nabla_{\theta_d} V(D) = \mathbb{E}_{x \sim p_{data}} [\nabla_{\theta_d} log D(x)] - \mathbb{E}_{x,z} \text{sign}(D(x) - z)$

- Reduce the gradient
- Alleviate gradient explosion

• Training G with fixed D

 $\nabla_{\theta_g} V(G) = \mathbb{E}_{z \sim p_z} [\nabla_{\theta_d, \theta_g} log D(1 - D(G(z)))] + \mathbb{E}_{x \sim p_{data}} \mathrm{sign}(G(D(x)) - x)$

- Enhance the gradient
- Alleviate gradient vanish

Experimental & Visualization Results

Learning Objective	CelebA	CIFAR-10		
WGAN 1	36.47	55.96		
HingeGAN 54	25.57	42.4		
LSGAN 36	30.76	42.01		
DCGAN 40	27.02	38.56		
WGAN-GP 14	70.28	41.86		
Realness GAN-Obj.1 49	2×	36.73		
Realness GAN-Obj.2 49	23.51	34.59		
Realness GAN-Obj.3 49	-	36.21		
AdaptiveMix 32	12.43	30.85		
CLR-GAN(Ours)	13.63	23.3		

Method	AFHQ-Cat		24	FFHQ			LSUN Church		
	FID ↓	P↑	R ↑	$\mathrm{FID}\downarrow$	$P\uparrow$	R ↑	FID \downarrow	P↑	$R\uparrow$
StyleGAN-V2 22	7.92	0.68	0.27	3.86	0.68	0.25	4.04	0.58	0.40
LC-Reg 46	6.70	-	-	3.93	-	-	4.07	-	-
StyleGAN-V2-ADA 19	6.05	0.66	0.25	4.01	0.66	0.26	4.01	0.61	0.43
StyleGAN-V2-APA 18	4.88	0.65	0.30	3.75	0.67	0.29	3.92	0.60	0.43
StyleGAN-V2 + Ours	4.79(-3.13)	0.76	0.28	3.44(-0.42)	0.70	0.41	3.52(-0.52)	0.63	0.46
StyleGAN-V2-ADA + Ours	4.45(-0.43)	0.74	0.33	3.37(-0.64)	0.71	0.44	3.43(-0.58)	0.61	0.48

CLR-GAN: Improving GANs Stability and Quality via Consistent Latent Representation and Reconstruction

Shengke Sun^{1,*}, Ziqian Luan^{2,*}, Zhanshan Zhao¹³, Shijie Luo¹, Shuzhen Han¹

(* Equal contribution)

Project Page

sunshengke@tiangong.edu.cn

Zoom: https://us05web.zoom.us/j/6682329594?pw d=eo6TpuMzST2WR5KcMhumaHPA0nlQiV.1 &omn=87392099087

