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What is Self-Supervised Learning ?

Self-Supervised Learning (SSL): 
• Machine Learning paradigm

• Learn from unlabeled data

• Fine-tune pre-trained SSL model for downstream tasks
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Let’s look at a more detailed example !
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SSL Workflow: from Training to Inference

[1] Aniruddha Saha et al, Backdoor Attacks on Self-Supervised Learning.  CVPR 2022. 
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SSL Achieves Promising Performance
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However, SSL Suffers from Backdoor Attacks
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Self-supervised model is trained on a 

poisoned unlabeled dataset. 

The triggers are added to the images 

of Rottweiler (target class). 



However, SSL Suffers from Backdoor Attacks
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• Large public unlabeled dataset 

• Easy to poison, hard to detect, scan images time-consuming 

• Prior defense needs downstream tasks and labeled dataset

• Neural Cleanse [1]

• Reverse-engineering needs labels 

• Quadratic complexity on class numbers (SSL has huge class numbers)

• ABS [2]

• Detect backdoor via analyzing the behaviors of a neuron under different levels of stimulation

• Unknown downstream tasks 

• Pseudo downstream tasks: Linear Probe
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SSL Backdoor Defense Challenges

[1] Wang, Bolun, et al. "Neural cleanse: Identifying and mitigating backdoor attacks in neural networks." S&P’19 

[2] Liu, Yingqi, et al. "Abs: Scanning neural networks for back-doors by artificial brain stimulation."  CCS’19



• Large public unlabeled dataset

• Unknown downstream tasks  

• Pseudo downstream tasks: Linear Probe 
• NC: Index > 2.0,  ABS: REASR > 0.88, the model is seen as Trojaned.

• The model is pre-trained on CIFAR-10. 

• The defender can only detect backdoor activated by small trigger with same 
training dataset, failed in other cases.  
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SSL Backdoor Defense Challenges

Small patch trigger

Global invisible trigger
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Vision: Our Defense Target SSL-Cleanse
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Cat
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Trojaned!!!

Our Objective: 
• Detector: Determine the SSL encoder's identity status, whether it is benign or trojaned

• Mitigator: Mitigate the trojaned encoders 



• Assume defender have access 

• A few unlabeled data

• Pre-trained SSL encoder 

• Our solution: Pseudo labels
• e.g., clustering by K-Means
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Our Proposed Detector 
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Cluster Number K is key parameter !



• Silhouette score: calculate the goodness 
of a clustering technique
• Its value ranges from -1 to 1, larger the better
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Our Proposed Detector: Cluster K
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ImageNet-100 dataset

𝑎 𝑖 : mean distance between i and all other data points in the same cluster.

𝑏 𝑖 : the smallest mean distance of i to all points in any other cluster

𝑠 𝑖 =
𝑏 𝑖 − 𝑎(𝑖)

max{𝑎 𝑖 , 𝑏(𝑖)}
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Our Proposed Detector: Cluster K
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ImageNet-100 dataset
SWK method: 

• Idea is to compute the average silhouette scores for 

neighboring K values

• Aim to refine the silhouette curvature
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Our Proposed Detector: Trigger generation
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Step1: Select image 𝑥𝑖
𝑗
 from each cluster 𝐷𝑖 and initialize trigger ∆𝑖 ∙ 𝑚𝑖. 

These inputs are then fed into a pre-trained SSL encoder to obtain representations. 

Step2: Iteratively update ∆𝑖 and mask 𝑚𝑖 to generate representations that are similar to those of 𝑥𝑖
𝑗
. 

This process results in triggers generation for k clusters,

Step3:  k triggers of K clusters are subsequently forwarded to the outlier detector module for further processing. 
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Our Proposed Detector: Trigger generation
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Here < a, b > and ||a|| represent the cosine similarity of a and b, and the l2-norm of a, respectively.

Small patch-size trigger

Global invisible trigger
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Our Proposed Detector: Outlier

The Anomaly Index function:  𝑀 𝑥𝑖, 𝑥 =
|𝑥𝑖−𝑚𝑒𝑑𝑎𝑖𝑛 𝑥 |

𝑐∙𝑚𝑒𝑑𝑎𝑖𝑛(|𝑥𝑖−𝑚𝑒𝑑𝑎𝑖𝑛 𝑥 |)

is used to ascertain if 𝑥𝑖 is an anomaly. c =1.4826. 
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Performance of Our Detector

TP indicates the true positive count, referring to Trojaned encoder numbers detected by our detector. 

FP represents false positives, indicating clean encoders misclassified as Trojaned encoders by our detector.

Detection Accuracy (DACC) is the ratio of correctly identified encoder types (either Benign or Trojan) relative to the 

total count of encoders.

A comparison of detection accuracy between SSLCleanse

using the SWK method and the direct search on 

ImageNet-100.



Step1: Select clean image 𝑥𝑖 from each cluster 𝑖 and augment the image to images 𝑥𝑖1 and 𝑥𝑖2.

Step2: Attach trigger t to half of 𝑥𝑖2. The 50% means that we set an equal weight for attack removal 
and clean accuracy. 

Step3: Pass these new training samples through the Trojaned encoder 𝑓 to obtain their respective 
representations. We then optimize the similarity between the representations by fixing the model 
𝑓 and updating the encoder 𝑓′ to eliminate the Trojan trigger effects, resulting in a clean encoder.
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Our Proposed Mitigator
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Our mitigator is compatible with diverse training methods and demonstrates good 

performance for both small patch triggers and global invisible triggers.
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Performance of Our Mitigator



A larger ratio introduces a higher detection accuracy (DACC).

19

Ablation Study:  Data Ratio
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