

Adaptive Parametric Activation

Konstantinos Alexandridis, Jiankang Deng, Anh Nguyen and Shan Luo

Poster #24 - Tue 1 Oct 16:30 - 18:30 Paper: https://arxiv.org/abs/2407.08567 Code: https://github.com/kostas1515/AGLU

Summary

- We study the importance of the activation function in **balanced** and **imbalanced** classification problems;
- In balanced classification the Sigmoid or Softmax activations are used primarily, however, in imbalanced classification these activations impede rare class learning and other activations are used like Balanced Softmax [1] or Gumbel activation [2].
- We propose the novel Adaptive Parametric Activation (APA) function that **unifies** most common activation functions under a single formula;
- We have validated the efficacy of APA in both **long-tailed**, and **balanced** benchmarks surpassing the state of the art;

[1] Ren et. al. 'Balanced Meta-Softmax for Long-Tailed Visual Recognition' in NeurIPS2020[2] Alexandridis et. al. 'Gumbel Optimised Loss for long-tailed instance Segmentation' in ECCV2022

Background (1)

The class imbalance affects the activations of the neural network:

1) learned logit distributions under imbalanced (top) and balanced training (bottom)

Background (2)

The class imbalance affects the channel attention signals of the neural network:

2) Intermediate activations and channel attention signals

Adaptive Parametric Activation (APA)

 Adaptive Parametric Activation (APA) replaces the Sigmoid layer and the RELU layer with a learnable activation function.

Formula:

Name

RELU [21]

Gaussian Unit [31]

Sigmoid Unit [31]

Mish [64]

PRELU [27]

ELU [11]

AGLU (ours)

Eq.1:
$$\eta_{ad}(z,\kappa,\lambda) = (\lambda \exp(-\kappa z) + 1)^{\frac{1}{-\lambda}}$$

Eq.2:
$$AGLU(z, \kappa, \lambda) = z \cdot \eta_{ad}(z, \kappa, \lambda)$$

Table 1: Comparison of different activation functions.

Formula

 $\eta(z) = \max(0, z)$

 $\eta(z) = z\sigma(1.702z)$

 $\eta(z) = z\sigma(z)$

 $\eta(z) = z \tanh(\ln(1 + \exp(z)))$

 $\eta(z,\kappa) = \max(0,z) + \kappa \min(0,z)$

 $\eta(z,\kappa) = \max(0,z) + \kappa(\exp(\min(0,z)) - 1)$

 $\eta(z,\kappa,\lambda) = z \cdot (\lambda \exp(-\kappa z) + 1)^{\frac{1}{-\lambda}}$

Results (1)

• APA can be used in both long-tailed classification and long-tailed instance segmentation tasks.

Method	Backbone	Many	Medium	Few	Average
MiSLAS [111]	R50 [28]	61.7	51.3	35.8	52.7
KCL [43]		61.8	49.4	30.9	51.5
TSC [53]		63.5	49.7	30.4	52.4
RIDE $(3E)$ +CMO [68]		66.4	53.9	35.6	56.2
DOC [86]		65.1	52.8	34.2	55.0
CC-SAM [116]		61.4	49.5	37.1	52.4
Our Baseline		66.2	53.1	<u>37.1</u>	56.0
APA [*] (ours)	SE-R50 [37]	67.5	54.3	39.3	57.4
$APA^* + AGLU$ (ours)		68.3 ^{+1.9}	$54.8^{+0.9}$	$39.4^{+2.1}$	$57.9^{+1.7}$
RIDE (4E) [95]	X50 [100]	68.2	53.8	36.0	56.8
SSD [52]		66.8	53.1	35.4	56.0
BCL [117]		67.9	54.2	36.6	57.1
CNT [67]		63.2	52.1	36.9	54.2
ALA [110]		64.1	49.9	34.7	53.3
ResLT [13]		63.6	55.7	38.9	56.1
ABC-Norm [36]		60.7	49.7	33.1	51.7
RIDE $(3E)$ +CMO+CR [60]		67.3	54.6	38.4	57.4
LWS+ImbSAM [115]		63.2	53.7	38.3	55.3
Our Baseline		67.9	53.0	37.7	56.7
APA^* (ours)	SE-X50 [37]	68.9	55.4	39.4	58.4
$APA^* + AGLU (ours)$		69.8 ^{+1.6}	$55.7^{0.0}$	$41.1^{+2.2}$	$59.1^{+1.7}$

Table 2: Top-1 accuracy (%) on ImageNet-LT test set. E denotes ensemble.

-			0			
Method	Backbone	$ AP^m $	AP^r	AP^{c}	AP^{f}	AP^b
RFS [22]		23.7	13.3	23.0	29.0	24.7
IIF $[2]$		26.3	18.6	25.2	30.8	25.8
Seesaw [89]		26.4	19.6	26.1	29.8	27.4
LOCE [20]	DFO	26.6	18.5	26.2	30.7	27.4
PCB+Seesaw [30]	R50	27.2	19.0	27.1	30.9	28.1
ECM [39]		27.4	19.7	27.0	31.1	27.9
GOL [1]		27.7	21.4	27.7	30.4	27.5
ECM+GAP [107]		26.9	20.1	26.8	30.0	27.2
GOL (baseline)	SE-R50	28.2	20.6	28.9	30.8	28.1
GOL+AGLU(ours)	APA*-R50	$29.1^{+0.9}$	$21.6^{+0.2}$	$29.6^{+0.7}$	$31.7^{+0.6}$	$29.0^{+0.9}$
RFS [22]		27.0	16.8	26.5	32.0	27.3
NorCal [65]		27.3	20.8	26.5	31.0	28.1
Seesaw [89]		28.1	20.0	28.0	31.8	28.9
GOL [1]	R101 [28]	29.0	22.8	29.0	31.7	29.2
ECM [39]		28.7	21.9	27.9	32.3	29.4
PCB + Seesaw [30]		28.8	22.6	28.3	32.0	29.9
ROG [107]		28.8	21.1	29.1	31.8	28.8
GOL (baseline)	SE-R101	29.7	23.0	29.9	32.5	30.0
GOL+AGLU(ours)	APA*-R101	30.7 ^{+1.0}	$23.6^{+0.6}$	$\overline{31.3}^{+1.4}$	33.1 ^{+0.7}	$31.1^{1.1}$

Table 5: Comparisons on LVISv1.0 using MaskRCNN-FPN and 2x schedule.

Results (2)

• APA is better than previous activations and can be combined with other attention types in ImageNet-LT:

Activation	Many	Med.	Few	Avg
Sigmoid	66.2	53.1	37.1	56.0
with Temp	65.9	53.8	40.3	56.6
Gumbel	66.2	53.2	39.3	56.3
with Temp	<u>66.9</u>	53.4	39.7	56.7
ĀPĀ	67.1	53.8	39.6	$\overline{57.0}$

 Activations
 Avg

 ReLU
 57.4

 PReLU [27]
 54.8

 ELU [11]
 52.6

 Mish [64]
 57.4

 GELU [31]
 57.5

 SiLU [31]
 57.1

 AGLU
 57.9

Attention type

Spatial [98]

+APA

+APA + AGLU

+APA

+APA + AGLU

Spatial + Channel [98] 55.6

Avg

54.8

55.2

56.4

56.9

57.1

• APA generalizes in balanced classification and detection tasks:

			Method top-1
	Method A	P^{b} Method top	$rac{1}{1}$ SE-R50 77.5
	FasterRCNN-R50 25	5.4 ResNet50 [37] 76	-9 +APA* 77.9
Method $AP^{o}AP^{m}$	w/SE 27	7.0 w/ AGLU 77	$+APA^* + AGLU$ 78.7
MaskRCNN-R50 39.2 35.4	w/ APA*+AGLU 29	$9.9 \qquad SE_{BesNet50} [37] = 77$	5 SE-R101 79.4
w/SE 40.5 36.9	Cascado PCNN P50 21	$\frac{16}{16}$ w/APA*+ACIU 78	7 +APA* 79.2
w/ APA*+AGLU 41.2 37.6		$\frac{1.0}{CPAM} \xrightarrow{\text{W/ALA} + AGL0} \frac{70}{78}$	$\frac{11}{2}$ +APA* + AGLU 80.3
		3.3 CDAM-ResNet30 [37] [70	.5 SE-R152 80.3
	APA*+AGLU-CRCNN 35	\overline{W}/APA^++AGL0 78	-9 +APA* 80.5
			$+APA^* + AGLU$ 80.8
(a)COCO	(b)V3Det	(c)ImageNet1k	(d) ImageNet1k

Qualitative results

• APA increases the variance (a) and the entropy (b) of the attention signal, allowing the model to correctly classify the rare classes.

Thank you

Poster #24 - Tue 1 Oct 16:30 - 18:30 Paper: https://arxiv.org/abs/2407.08567 Code: https://github.com/kostas1515/AGLU

