EFFICIENT BIAS MITIGATION WITHOUT PRIVILEGED INFORMATION

Mateo Espinosa Zarlenga Swami Sankaranarayanan

Jerone T. A. Andrews

Zohreh Shams

Mateja Jamnik

Alice Xiang

Sony Al

Supervised Learning's Bread And Butter

TODAY WE WILL CONSIDER THE TRADITIONAL SUPERVISED LEARNING SETUP:

Supervised Learning's Bread And Butter

In particular, we will focus on instances when a DNN f_{θ} is trained by minimizing the empirical mean loss $\ell(\cdot)$ over the training set:

$$J_{ERM}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\theta}(x_i), y_i)$$

This is what is referred to as **Empirical Risk Minimization (ERM)**.

Even when ERM leads to high performance on average, this can change when we look at specific groups:

Even when ERM leads to high performance on average, this can change when we look at specific groups:

Even when ERM leads to high performance on average, this can change when we look at specific groups:

Even when ERM leads to high performance on average, this can change when we look at specific groups:

 Wildlife image classification (Wah et al., '11; Sagawa et al., '20)

 Input: image of a bird
 Label: bird type

Label: bird type

97.3% average test accuracy72.6% on waterbirds on land backgrounds

WE ARE THEREFORE INTERESTED IN MAXIMIZING THE WORST GROUP ACCURACY (WGA):

WGA
$$(f_{\theta}, \mathcal{P}) := \min_{g \in \{1, 2, \cdots, k\}} \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{P}(\mathbf{x}, y|g)} \left[\mathbb{1} \left(f_{\theta}(\mathbf{x}) = y \right) \right]$$

BIAS MITIGATION

There is a plethora of bias mitigation methods

BIAS MITIGATION

THERE IS A PLETHORA OF BIAS MITIGATION METHODS

THESE CAN BE:

1. GROUP SUPERVISED: WE ASSUME GROUP LABELS DURING TRAINING

BIAS MITIGATION

THERE IS A PLETHORA OF BIAS MITIGATION METHODS

These can be:

1. GROUP SUPERVISED: WE ASSUME GROUP LABELS DURING TRAINING

2. GROUP UNSUPERVISED: WE DO NOT ASSUME GROUP LABELS DURING TRAINING*

*The Reality of Unsupervised Methods

IN PRACTICE, UNSUPERVISED BIAS MITIGATION METHODS NEED GROUP LABELS DURING MODEL SELECTION TO AVOID SELECTING A BIASED MODEL:

*The Reality of Unsupervised Methods

IN PRACTICE, UNSUPERVISED BIAS MITIGATION METHODS NEED GROUP LABELS DURING MODEL SELECTION TO AVOID SELECTING A BIASED MODEL:

Selected model if validation group labels are unavailable

The selected hyperparameters lead to a model no better than an ERM model!

Our Work

How can we design a bias mitigation method that does not require group labels for either training or model selection?

Insight #1 (Nam et al. and Liu et al.): Samples with spurious correlations are learnt before samples without the spurious correlation

Insight #1 (Nam et al. and Liu et al.): Samples with spurious correlations are learnt before samples without the spurious correlation

Previous works [1, 2] exploit this by looking at a pre-determined "time slice"

[1] NAM ET AL. "LEARNING FROM FAILURE: DE-BIASING CLASSIFIER FROM BIASED CLASSIFIER." NEURIPS 2020.
[2] LIU ET AL. "JUST TRAIN TWICE: IMPROVING GROUP ROBUSTNESS WITHOUT TRAINING GROUP INFORMATION." ICML, 2021.

INSIGHT #2: TRAINING LOSS HISTORIES ARE VERY INFORMATIVE SIGNALS

Insight #2: Training loss histories are very informative signals

CLUSTERING SAMPLES BASED ON THEIR TRAINING HISTORIES PRODUCES A DATA SUBSET WITH A HIGHER PROPORTION OF SAMPLES WITHOUT THE SPURIOUS CORRELATION!

WE PROPOSE TARGETED AUGMENTATIONS FOR BIAS MITIGATION (TAB), A NEW HYPERPARAMETER-FREE GROUP-UNSUPERVISED BIAS MITIGATION PIPELINE:

OUR APPROACH EXPLOITS THE **TRAINING HISTORY** OF AN IDENTIFICATION MODEL TO GENERATE **A GROUP-BALANCED DATASET** FROM WHICH A ROBUST MODEL CAN BE TRAINED

TAB first trains an ERM model while **keeping track of the loss** across all training samples and epochs:

WE THEN IDENTIFY ERROR GROUPS BY **CLUSTERING THE LOSS HISTORY EMBEDDING** SPACE FOR EACH CLASS LABEL:

Next, we generate a **GROUP-BALANCED TRAINING SET** BY **UPSAMPLING** EACH MINORITY CLUSTER TO MATCH THE SIZE OF THE MAJORITY CLUSTER.

WE DO SO BY RANDOMLY UPSAMPLING ELEMENTS FROM THE MINORITY CLUSTER.

Finally, we **train a robust model** using ERM on this group-balanced dataset:

SO HOW DOES TAB PERFORM IN PRACTICE?

KEY RESULTS TL;DR

	Method - {Hypers}	\mid Even-Odd $(p=99\%)$	$\texttt{cMNIST} \ (p=98\%)$	Waterbirds	CelebA	BAR	CUB
WGA (%)	G-DRO - $\{\eta, \lambda_{\ell_2}\}$	57.66 ± 6.76	59.29 ± 3.27	68.54 ± 1.75	85.74 ± 0.69	N/A	N/A
	ERM - $\{\eta, \lambda_{\ell_2}\}$	55.98 ± 13.85	46.97 ± 8.71	44.86 ± 1.11	34.81 ± 0.26	29.56 ± 1.78	16.67 ± 0.00
	LfF - $\{q\}$	2.97 ± 3.36	48.45 ± 5.83	51.14 ± 1.08	40.00 ± 0.00	29.56 ± 2.35	14.44 ± 3.14
	JTT - $\{T, \lambda_{up}\}$	79.32 ± 1.76	57.21 ± 3.59	44.50 ± 0.45	37.78 ± 2.83	30.98 ± 2.00	12.22 ± 1.57
	MaskTune - $\{\tau\}$	72.82 ± 3.08	13.94 ± 7.37	35.67 ± 1.75	37.04 ± 1.14	17.61 ± 1.54	10.00 ± 7.20
	TAB (ours) - \emptyset	81.85 ± 2.39	63.26 ± 2.50	55.92 ± 1.80	40.00 ± 1.20	38.94 ± 1.03	18.89 ± 1.57
Mean Acc. (%)	$\boxed{\text{G-DRO} - \{\eta, \lambda_{\ell_2}\}}$	58.97 ± 6.79	94.83 ± 0.55	97.19 ± 0.28	92.67 ± 0.14	N/A	N/A
	ERM - $\{\eta, \lambda_{\ell_2}\}$	85.52 ± 12.09	91.22 ± 0.26	97.68 ± 0.06	95.45 ± 0.04	56.93 ± 1.13	$ 74.81 \pm 0.29$
	LfF - $\{q\}$	60.29 ± 13.53	90.48 ± 1.17	97.46 ± 0.12	95.22 ± 0.02	55.96 ± 1.25	74.00 ± 0.67
	JTT - $\{T, \lambda_{up}\}$	93.12 ± 4.74	92.13 ± 1.13	97.71 ± 0.11	94.77 ± 0.05	58.00 ± 2.34	69.92 ± 0.10
	MaskTune - $\{\tau\}$	92.60 ± 5.02	83.25 ± 3.26	98.15 ± 0.04	95.32 ± 0.07	50.66 ± 1.38	70.07 ± 0.97
	TAB (ours) - \emptyset	94.98 ± 3.37	93.28 ± 1.09	97.52 ± 0.09	94.67 ± 0.05	$61.11\ \pm\ 0.94$	72.98 ± 0.34

TAB ACHIEVES BETTER WORST-GROUP ACCURACIES THAN COMPETING APPROACHES WHILE MAINTAINING A COMPETITIVE MEAN ACCURACY COMPARED TO ERM MODELS

PAPER, POSTER, AND CONTACT INFORMATION

Poster Information

TODAY, TUESDAY OCT 1ST

4:30 p.m. — 6:30 p.m.

Poster #27

IF YOU WANT TO DISCUSS FURTHER, CONTACT ME AT ME466@CAM.AC.UK