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Overview

Unsupervised MVS allows us access to large amounts of data
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A motivating experiment

initialize using
GT depth of ref image... Results: standard loss
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The standard unsupervised loss produces artifacts objective

DTU dataset Jensen et al., 2016
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Regularization
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Regularization

Results: standard loss (1%*-order) Results: ours (relaxed 2"%-order)
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Self-Consistency
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Self-Consistency
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Our method: DIV Loss

Depth smoothness + Image synthesis + View sampling
A novel supervision strategy for unsupervised multi-view stereo

e Easily drops into existing pipelines
e Improves results quantitatively and qualitatively
e Requires minimal additional GPU memory and time during training
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Results
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DTU Results

DTU dataset Jensen et al., 2016

Method Ovr. | Diff
Baseline 0.361

+ DIV loss (Ours) 0.330 -0.031
RC-MVSNet 0.345

+ DIV loss (Ours) 0.333 -0.017
CL-MVSNet 0.330

+ DIV loss (Ours) 0.321 -0.009

state-of-the-art among
unsupervised methods

baseline + DIV loss
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DTU Results

DTU dataset Jensen et al., 2016

Example Input Images

baseline + DIV loss

Alex Rich | anrich@ucsb.edu | DIV Loss



Additional Results

Tanks and Temples dataset, Knapitsch et al., 2017
ScanNet++ dataset, Yeshwanth et al., 2023

DTU | T&T intermed. T&T adv. | ScanNet++
Method only F-score *  F-score 1| F-score 1
CasMVSNet v 56.84 31.12 -
CVP-MVSNet v 54.03 - -
Supervised AttMVS v 60.05 31.93 -
PatchmatchNet v 53.15 32.31 -
GeoMVSNet X 65.89 41.52 -
MVSFormer-H X 66.41 41.70 -
Multi-Stage Self_sup CVP v 46.71 - B
Self-Sup. U-MVS v 57.15 30.97 -
KD-MVS X 64.14 37.96 -
M>VSNet v 37.67 - -
JDACS-MS v 45.48 - -
DS-MVSNet v 54.76 - -
E2E Unsup. ElasticMVS X 57.88 37.81 -
RC-MVSNet v 55.04 30.82 37.42
CL-MVSNet v 59.39 37.03 40.71
DIV-MYVS (Ours) v 60.36 38.36 41.64

(trained on DTU with no fine-tuning on additional data)
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Conclusion

DIV loss: Depth smoothness + Image synthesis + View sampling

A novel supervision strategy for unsupervised multi-view stereo

Easily drops into existing pipelines
Improves results quantitatively and qualitatively
Requires minimal additional GPU memory and time during training
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