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Overview
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RGB images + camera parameters

3D model

depth maps

predict depth
(deep network)

fuse depth
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prev. work

additional
constraints

source views reference view MVS network
to train

depth prediction

Overview

GOAL: train this 
without GT depth
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Unsupervised MVS allows us access to large amounts of data

our focus

core 
unsupervised loss

regularization

self-consistency

reconstruct input
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ref

src 1

src 2

src 3

A motivating experiment

…then update to minimize 
core unsupervised loss

initialize using
GT depth of ref image…

0.0 >2mm
depth error 

after optimization
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DTU dataset Jensen et al., 2016

The standard unsupervised loss produces artifacts

Results: standard loss

this is our training 
objective
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Ours

✅ smooth surfaces

✅ object boundaries

Regularization
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(GT objects in red)

❌ stair stepping ❌ boundary blurring
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Regularization
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DTU dataset Jensen et al., 2016

Results: standard loss (1st-order)

0.0 >2mm

depth error 

Results: ours (relaxed 2nd-order)
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Self-Consistency

source views reference view MVS network
to train

depth prediction

…

W

warp
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warped views

…

synthesized 
reference image

CNN compare to
reference
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(de-coupled)

Self-Consistency
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ref

network input views

network supervision views
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Our method: DIV Loss
Depth smoothness + Image synthesis + View sampling

A novel supervision strategy for unsupervised multi-view stereo

● Easily drops into existing pipelines
● Improves results quantitatively and qualitatively
● Requires minimal additional GPU memory and time during training
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Results
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DTU Results
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DTU dataset Jensen et al., 2016

baseline + DIV loss

state-of-the-art among 
unsupervised methods
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DTU Results

+ DIV loss
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baseline

Example Input Images
DTU dataset Jensen et al., 2016



Alex Rich | anrich@ucsb.edu | DIV Loss

Additional Results
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Tanks and Temples dataset, Knapitsch et al., 2017
ScanNet++ dataset, Yeshwanth et al., 2023

(trained on DTU with no fine-tuning on additional data)
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Conclusion
DIV loss: Depth smoothness + Image synthesis + View sampling

A novel supervision strategy for unsupervised multi-view stereo

● Easily drops into existing pipelines
● Improves results quantitatively and qualitatively
● Requires minimal additional GPU memory and time during training
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