

EUROPEAN CONFERENCE ON COMPUTER VISION

CPT-VR: Improving Surface Rendering via Closest Point Transform with View-Reflection Appearance

Zhipeng Hu, Yongqiang Zhang, Chen Liu, Lincheng Li, Sida Peng, Xiaowei Zhou, Changjie Fan, Xin Yu

NetEase Fuxi AI Lab, The University of Queensland, Zhejiang University

Board ID 215, Paper ID 9272

1 Overview

Differentiable surface rendering via Closest Point Transform

- Projects points exactly on the current surface
- Address the point deviation issue caused by linear interpolation
- Not need a differentiable Marching Cubes thanks to **CPT**

View-Reflection appearance

- View rays handle the regions without highlights
- **Reflection** rays based on the points from CPT are more accurate
- Combination of View-Reflection rays and CPT capture specular regions well.

1-point background

- No longer be dependent on any prior BG. Knowledge for surface rendering
- Simple but efficient for reconstruction of the foreground

2 Motivation

- Point deviation caused by linear approximation
 - **IDR:** Sphere tracing, linear projection along the ray
 - **DMTet:** Linear interpolation with local deformed vertices
 - Inaccurate gradient backpropagation
 - **CPT:** Projects points exactly on the current surface

Only view or reflection rays hardly capture specular regions

- Only View: Cannot handle specular highlights
- Only Reflection:
 - Diminish its capability to reconstruct non-specular areas
 - Backpropagation errors due to the deviated points
- View-Reflection & CPT: Handles specular highlights well

More accurate surface in specular regions or high-frequency regions

	GroundTruth	NVDIFFREC	DMTet-VR	NeuS2	CPT-VR-M
Lego					
Hotdog					
Materials	3350	83250	8836	8882	8880

(a) IDR

$d_i - d_i$ S_0 : zero-level set $\mathbf{x}_i, \mathbf{x}_i$: vertices of an edge where the SDF changes sign d_i, d_j, d_{ii} : SDF values, \mathbf{n}_{ii} : the normal vector of \mathbf{x}_{ii} \mathbf{x}_{ii} : linear interpolation of \mathbf{x}_i , \mathbf{x}_i by d_i , d_i \mathbf{x}'_{ii} : the projected vertex of \mathbf{x}_{ii} by CPT

(c) CPT-Ours

VR gets better normals and RGB

(b) DMTet

3 Method

4 Networks

Hashgrid-BG

Progressive Numerical Gradient

Normal Consistency

View-Reflection Spherical Harmonics

r

5 More Details

Marching Cubes

- Sphere-like initialization
- Extract the mesh at 256^3 or 512^3 per epoch
- Grid resolution randomly adjusted in [-3,3]

Closest Point Transform

- Moves the deviated point along the opposite direction of n by its SDF value
- Run CPT in every iteration
- Feature-based Rasterisation
 - Nvdiffrast
 - Barycentric coordinate per view ray
 - Appearance Integration $\mathbf{c}_p = M_p \mathbf{c}_p^f + (1 M_p) \mathbf{c}_p^b$.

6 Training examples

7 Experiments on DTU

DTU dataset

- Lower Chamfer Distance
- More accurate specular regions
- Stable convergence
 - Some occurrences of overlap and flipping in the early stages
 - Barely visible by the end of the training

Training process

DTU dataset

Quantitative results on DTU

ScanID	24	37	40	55	63	65	69	83	97	105	106	110	114	118	122	Mean
DMTet [20]	1.84	1.73	1.05	0.61	1.66	1.37	0.68	1.28	3.82	1.07	0.91	1.15	0.37	0.54	0.55	1.24
IDR [35]	1.63	1.87	0.63	0.48	1.04	0.79	0.77	1.33	1.16	0.76	0.67	0.90	0.42	0.51	0.53	0.90
MVSDF [38]	0.83	1.76	0.88	0.44	1.11	0.90	0.75	1.26	1.02	1.35	0.87	0.84	0.34	0.47	0.46	0.89
FastMESH [40]	0.65	1.48	0.57	0.40	1.48	0.77	0.56	0.86	0.84	0.94	0.72	0.81	0.52	0.49	0.54	0.77
$\operatorname{RegSDF}[36]$	0.59	1.41	0.63	0.42	1.34	0.62	0.59	0.89	0.91	1.02	0.60	0.59	0.29	0.40	0.38	0.71
HF-NeuS [27] (w/ M)	1.11	1.28	0.61	0.47	0.97	0.68	0.62	1.34	0.91	0.73	0.53	1.82	0.38	0.54	0.51	0.83
LOD-NeuS [42] (w/ M)	0.65	0.91	0.37	0.48	1.05	0.87	0.82	1.22	0.95	0.69	0.56	1.30	0.42	0.58	0.57	0.76
NeuS2 [26] (w/M)	0.56	0.76	0.49	0.37	0.92	0.71	0.76	1.22	1.08	0.63	0.59	0.89	0.40	0.48	0.55	0.70
NeuS2 [26] (w/ BG1)	0.69	0.86	0.83	0.34	1.05	0.68	0.65	1.05	1.12	0.67	0.58	1.41	0.37	0.50	0.52	0.75
Ours (w/ M)	0.55	0.72	0.35	0.38	0.85	0.59	0.54	0.81	0.83	0.67	0.53	0.59	0.32	0.38	0.37	0.56
Ours (w/ BG1)	0.43	0.73	0.36	0.32	0.93	0.61	0.61	0.89	1.02	0.68	0.48	0.73	0.32	0.37	0.37	0.59

8 Analysis on DTU

- View-Reflection > View > Reflection
- Reflection does not work well for others
- Depth supervision improves the quality
- Normal consistency > Eikonal loss
- MC by 256^3 is efficient
- MC by 512^3 get best shape

Normal consistency V.S. Eikonal loss

Ablation studies on DTU

(b) CPT-V-M (0.78)

(e) CPT-VR-BG1 (0.91)

(f) CPT-VR-BG1-D (0.73)

Impact of view-reflection vectors

Method	IDR	IDR	DMTet	DMTet	Ours	Ours	Ours
View Vector (V) Reflection Vector (R)	1	\$ \$	1	<i>s</i>	 ✓ 	1	1 1
$CD\downarrow$	0.90	1.68	1.24	1.63	0.72	0.83	0.65

Efficiency with different settings

Method	Experimetal Se Res. of Input Image	ettings Res. of MC	- Training Time (m) \downarrow	$\mathrm{CD}\downarrow$
CPT-VR-M	800×600	256	15.3	0.65
CPT-VR-M-D	800×600 1600×1200	$256 \\ 512$	14.4 57.7	$0.56 \\ 0.59$
CPT-VR-BG1	800×600	256	21.5	0.66
CPT-VR-BG1-D	800×600 800×600 1600×1200	$128 \\ 256 \\ 512$	13.7 23.4 76.1	0.70 0.53 0.59

9 More results

Single-Image-to-3D

Our method can be adapted for reconstruction in the wild

10 Conclusions

- A novel surface rendering method CPT-VR.
 - Closest Point Transform: Correct the deviated points approximated by linear interpolation
 - View-Reflection & CPT: Roubust to the specular highlights
 - 1-point Background: Independent on any prior BG. knowledge for surface rendering
- Experiments on serveral datasets show our model gets better reconstruction results.
- Extensibility of Single-Image-to-3D Generation

THANK YOU

