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 Differentiable surface rendering via Closest Point Transform

 Projects points exactly on the current surface

 Address the point deviation issue caused by linear interpolation

 Not need a differentiable Marching Cubes thanks to CPT

 View-Reflection appearance 

 View rays handle the regions without highlights

 Reflection rays based on the points from CPT are more accurate

 Combination of View-Reflection rays  and CPT capture specular regions well.

 1-point background

 No longer be dependent on any prior BG. Knowledge for surface rendering

 Simple but efficient for reconstruction of the foreground

1 Overview



 Point deviation caused by linear approximation

 IDR: Sphere tracing, linear projection along the ray

 DMTet: Linear interpolation with local deformed vertices

 Inaccurate gradient backpropagation

 CPT: Projects points exactly on the current surface

 Only view or reflection rays hardly capture specular regions

 Only View: Cannot handle specular highlights

 Only Reflection: 

 Diminish its capability to reconstruct non-specular areas

 Backpropagation errors due to the deviated points

 View-Reflection & CPT: Handles specular highlights well

2 Motivation

VR gets better normals and RGB

More accurate surface in 

specular regions or 

high-frequency regions



3 Method
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15 More Details

 Marching Cubes

 Sphere-like initialization

 Extract the mesh at 256^3 or 512^3 per epoch 

 Grid resolution randomly adjusted in [-3,3]

 Closest Point Transform

 Moves the deviated point along the opposite 

direction of n by its SDF value

 Run CPT in every iteration

 Feature-based Rasterisation

 Nvdiffrast

 Barycentric coordinate per view ray

 Appearance Integration
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17 Experiments on DTU

DTU dataset

 Lower Chamfer Distance

 More accurate specular regions

 Stable convergence

 Some occurrences of overlap and flipping in 

the early stages

 Barely visible by the end of the training

DTU dataset

Training process

Quantitative results on DTU



18 Analysis on DTU

 View-Reflection > View> Reflection

 Reflection does not work well for others

 Depth supervision improves the quality

Normal consistency 

V.S. Eikonal loss

Ablation studies on DTU

Efficiency with different settings

Impact of view-reflection vectors

 Normal consistency > Eikonal loss

 MC by 256^3 is efficient

 MC by 512^3 get best shape



19 More results

Results with complex BG. on BlendedMVS

Our method can be adapted for reconstruction in the wild

Single-Image-to-3D



110 Conclusions

 A novel surface rendering method CPT-VR.

 Closest Point Transform: Correct the deviated points approximated by linear interpolation

 View-Reflection & CPT: Roubust to the specular highlights

 1-point Background: Independent on any prior BG. knowledge for surface rendering

 Experiments on serveral datasets show our model gets better reconstruction results.

 Extensibility of Single-Image-to-3D Generation
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