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Our method achieves high quality, high speed, and compact dynamic view synthesis
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Given multiple images from different viewpoints, novel view synthesis aims to 
generate images from new viewpoints. Two popular approach: neural radiance 
fields (NeRF) and 3D Gaussian Splatting.

Fast, data-efficient, compact representation is essential for synthesis

Novel View Synthesis
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Kerbl et al., “3D Gaussian Splatting for Real-Time Radiance Field Rendering,” SIGGRAPH 2023

3D Gaussian Splatting
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Extending to dynamic scenes

Challenges: multi-view assumption and huge memory consumption.  
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Our approach 
Key idea

Representing time-varying parameters
as functions of time with a few parameters
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Our dynamic 3D Gaussian parameters
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Intuition of our approach 
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Approximation of position and rotation

Fourier approximation for position, linear approximation for rotation
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● Metrics:
○ PSNR
○ MS-SSIM
○ FPS: rendering speed
○ Train time
○ Memory size: 

memory used to store optimized parameters 300x faster

Experiment
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Visual quality

Challenges in neural radiance field methods

HyperNeRF dataset

DyNeRF dataset

D-NeRF dataset

Comparable 10x smallerComparable
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Qualitative results
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https://docs.google.com/file/d/1Fq4ylUrmAw6BznP1BKoxk2RgJWBOFCm-/preview
https://docs.google.com/file/d/1JwwZ_62d_8GvSook5T2z8wGZ5zQ6qIKm/preview
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Application of Adding 3D object into scene
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Conclusion
Goal: Compact, fast, and high-quality dynamic novel view synthesis

Challenges: Multi-view assumption and huge memory consumption

Approach: Approximation of motion of 3D Gaussians by a function with a few parameters

Result: Cutting-edge visual quality, 3DGS-level inference speed, reasonable memory footprint

Thank you for your attention.

Join us at poster session 2 Tue Oct 1st, 16:30~18:30
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